Reputation: 611
I am trying to create a model to fit data from the cifar-10 dataset. I have a working convolution neural network from an example but when I try to create a multi layer perceptron I keep getting a shape mismatch problem.
#https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d
#https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.optimizers import RMSprop
# dimensions of our images.
img_width, img_height = 32, 32
train_data_dir = 'pro-data/train'
validation_data_dir = 'pro-data/test'
nb_train_samples = 2000
nb_validation_samples = 800
epochs = 50
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=input_shape))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator()
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
score = model.evaluate_generator(validation_generator, 1000)
print("Accuracy = ", score[1])
The error I am getting is this:
ValueError: Error when checking target: expected dense_3 to have 4 dimensions, but got array with shape (16, 1)
But if if change the input_shape for the input layer to an incorrect value "(784,)", I get this error:
ValueError: Error when checking input: expected dense_1_input to have 2 dimensions, but got array with shape (16, 32, 32, 3)
This is where I got a working cnn model using flow_from_directory: https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d
In case anyone is curious I am getting an accuracy of only 10% for cifar10 using the convolution neural network model. Pretty poor I think.
Upvotes: 0
Views: 688
Reputation: 481
according to your model, your model summary is
dense_1 (Dense) (None, 32, 32, 512) 2048
dropout_1 (Dropout) (None, 32, 32, 512) 0
dense_2 (Dense) (None, 32, 32, 512) 262656
dropout_2 (Dropout) (None, 32, 32, 512) 0
dense_3 (Dense) (None, 32, 32, 10) 5130
Total params: 269,834
Trainable params: 269,834
Non-trainable params: 0
Your output format is (32,32,10)
In the cifar-10 dataset you want to classify into 10 labels
Try adding
model.add(Flatten())
before your last dense layer.
Now your output layer is
Layer (type) Output Shape Param #
dense_1 (Dense) (None, 32, 32, 512) 2048
dropout_1 (Dropout) (None, 32, 32, 512) 0
dense_2 (Dense) (None, 32, 32, 512) 262656
dropout_2 (Dropout) (None, 32, 32, 512) 0
flatten_1 (Flatten) (None, 524288) 0
Total params: 5,507,594
Trainable params: 5,507,594
Non-trainable params: 0
Also, you've just used the dense and dropout layers in your model. To get better accuracy you should google the various CNN architectures which consists of dense and maxpooling layers.
Upvotes: 1