Reputation: 5422
I have a bunch of data that I need to see in some understandable manner. here what I've done so far:
..................................
features = []
for i in range(len(variance_list[0][:])):
for j in range(len(variance_list)):
features.append(variance_list[j][i])
plt.plot(features)
features.clear()
plt.xlabel('classes ')
plt.ylabel('features')
plt.show()
The result looks as followed:
So I've tried to plot this in 3D as followed :
for i in range(len(variance_list[0][:])):
for j in range(len(variance_list)):
Axes3D.plot(i,j,variance_list[j][i],label='parametric curve')
plt.show()
I get the following error message:
1510 # many other traditional positional arguments occur
1511 # such as the color, linestyle and/or marker.
-> 1512 had_data = self.has_data()
1513 zs = kwargs.pop('zs', 0)
1514 zdir = kwargs.pop('zdir', 'z')
AttributeError: 'int' object has no attribute 'has_data'
Any idea what I'm missing, or how may I solve this
Upvotes: 1
Views: 98
Reputation: 3706
in addition to cosmos' suggestion, there is a difference in x,y lines and the z var
variance_list=[[np.random.rand()**2*(j+1) for _ in range(10)] for j in range(4)]
fig = plt.figure()
ax = fig.gca(projection='3d')
for j in range(len(variance_list)):
ax.plot(range(len(variance_list[0])),variance_list[j],j,label='parametric curve')
plt.show()
Upvotes: 1