Reputation: 27373
I have a dataframe with many double (and/or float) columns, which do contain NaNs. I want to replace all NaNs (i.e. Float.NaN and Double.NaN) with null.
I can do this with e.g. for a single column x
:
val newDf = df.withColumn("x", when($"x".isNaN,lit(null)).otherwise($"x"))
This works but I'd like to do this for all columns at once. I recently discovered the DataFrameNAFunctions
(df.na
) fill
which sounds exactely what I need. Unfortunately I failed to do the above. fill
should replace all NaNs and nulls with a given value, so I do:
df.na.fill(null.asInstanceOf[java.lang.Double]).show
which gives me a NullpointerException
There is also a promising replace
method, but I cant even compile the code:
df.na.replace("x", Map(java.lang.Double.NaN -> null.asInstanceOf[java.lang.Double])).show
strangely, this gives me
Error:(57, 34) type mismatch;
found : scala.collection.immutable.Map[scala.Double,java.lang.Double]
required: Map[Any,Any]
Note: Double <: Any, but trait Map is invariant in type A.
You may wish to investigate a wildcard type such as `_ <: Any`. (SLS 3.2.10)
df.na.replace("x", Map(java.lang.Double.NaN -> null.asInstanceOf[java.lang.Double])).show
Upvotes: 3
Views: 10074
Reputation: 11
To Replace all NaN by any value in Spark Dataframe using Pyspark API you can do the following:
col_list = [column1, column2] df = df.na.fill(replace_by_value, col_list)
Upvotes: 1
Reputation: 6085
To replace all NaN(s) with null
in Spark you just have to create a Map
of replace values for every column, like this:
val map = df.columns.map((_, "null")).toMap
Then you can use fill
to replace NaN(s) with null values:
df.na.fill(map)
For Example:
scala> val df = List((Float.NaN, Double.NaN), (1f, 0d)).toDF("x", "y")
df: org.apache.spark.sql.DataFrame = [x: float, y: double]
scala> df.show
+---+---+
| x| y|
+---+---+
|NaN|NaN|
|1.0|0.0|
+---+---+
scala> val map = df.columns.map((_, "null")).toMap
map: scala.collection.immutable.Map[String,String] = Map(x -> null, y -> null)
scala> df.na.fill(map).printSchema
root
|-- x: float (nullable = true)
|-- y: double (nullable = true)
scala> df.na.fill(map).show
+----+----+
| x| y|
+----+----+
|null|null|
| 1.0| 0.0|
+----+----+
I hope this helps !
Upvotes: 5