Reputation: 615
I am trying to run this code:
import pandas as pd
import numpy as np
df = pd.read_csv('example.csv', sep=';', engine='python')
df1 =df.sort_values(['topic', 'student', 'level'], ascending=True)
count_list = df1.apply(lambda x: [df.ix[x.name-1].student if x.name >0 else np.nan, x.student, x.level>1], axis=1).values
#line giving the error
df1_count = pd.DataFrame(columns=['st_source','st_dest','reply_count'], data=count_list)
but constantly I get this error message:
ValueError: Shape of passed values is (1, 627), indices imply (3, 627)
Does anybody know how I can fix it?
Thank you!
Upvotes: 2
Views: 2752
Reputation: 6508
count_list = df1.apply(lambda x: (df.ix[x.name-1].student,np.nan,np.nan) if x.name 0 else (np.nan, x.student, x.level>1), axis=1).values
df2 = pd.DataFrame(count_list)
df2[['st_source','st_dest','reply_count']] = df2[0].apply(pd.Series)
df2 = df2.drop(0, 1)
This will return a DataFrame like this:
>>> df2
st_source st_dest reply_count
0 -0.689652 NaN NaN
1 0.696232 NaN NaN
2 0.767232 NaN NaN
3 NaN 0.696232 False
4 1.024604 NaN NaN
5 1.121045 NaN NaN
Probably there is a better and more efficient way to do this, but this solves the issue. Notice I made your if
statement to return a tuple of length 3 no matter which condition it fell into.
Upvotes: 2