Reputation: 647
I'm trying to perform a sentiment analysis in Python using Keras. To do so, I need to do a word embedding of my texts. The problem appears when I try to fit the data to my model:
model_1 = Sequential()
model_1.add(Embedding(1000,32, input_length = X_train.shape[0]))
model_1.add(Flatten())
model_1.add(Dense(250, activation='relu'))
model_1.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
The shape of my train data is
(4834,)
And is a Pandas series object. When I try to fit my model and validate it with some other data I get this error:
model_1.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=2, batch_size=64, verbose=2)
ValueError: Error when checking model input: expected embedding_1_input to have shape (None, 4834) but got array with shape (4834, 1)
How can I reshape my data to make it suited for Keras? I've been trying with np.reshape but I cannot place None elements with that function.
Thanks in advance
Upvotes: 22
Views: 44797
Reputation: 1088
Use tf.data.Dataset.from_tensor_slices to read the values from a pandas dataframe.
See https://www.tensorflow.org/tutorials/load_data/pandas_dataframe for reference how to do this properly in TF2.x
Upvotes: 2
Reputation: 5279
You need a specific version of Pandas for this to work. If you use the current version (as of 20th Aug 2018) this will fail.
Rollback your Pandas and Keras (pip uninstall ....) and then install a specific version like this
python -m pip install pandas==0.19.2
Upvotes: 2
Reputation: 1947
https://pypi.org/project/keras-pandas/
Easiest way is having the keras_pandas package to fit a pandas dataframe to keras.The code shown below is an general example from the package docs.
from keras import Model
from keras.layers import Dense
from keras_pandas.Automater import Automater
from keras_pandas.lib import load_titanic
observations = load_titanic()
# Transform the data set, using keras_pandas
categorical_vars = ['pclass', 'sex', 'survived']
numerical_vars = ['age', 'siblings_spouses_aboard', 'parents_children_aboard', 'fare']
text_vars = ['name']
auto = Automater(categorical_vars=categorical_vars, numerical_vars=numerical_vars, text_vars=text_vars,
response_var='survived')
X, y = auto.fit_transform(observations)
# Start model with provided input nub
x = auto.input_nub
# Fill in your own hidden layers
x = Dense(32)(x)
x = Dense(32, activation='relu')(x)
x = Dense(32)(x)
# End model with provided output nub
x = auto.output_nub(x)
model = Model(inputs=auto.input_layers, outputs=x)
model.compile(optimizer='Adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# Train model
model.fit(X, y, epochs=4, validation_split=.2)
Upvotes: 8
Reputation: 2392
None
is the number of expected rows that goes into training therefore you can't define it. Also Keras needs a numpy array as input and not a pandas dataframe. First convert the df to a numpy array with df.values
and then do np.reshape((-1, 4834))
. Note that you should use np.float32
. This is important if you train it on GPU.
Upvotes: 27