Reputation: 303
I am trying to train a simple MLP to approximate y=f(a,b,c). My code is as below.
import torch
import torch.nn as nn
from torch.autograd import Variable
# hyper parameters
input_size = 3
output_size = 1
num_epochs = 50
learning_rate = 0.001
# Network definition
class FeedForwardNet(nn.Module):
def __init__(self, l1_size, l2_size):
super(FeedForwardNet, self).__init__()
self.fc1 = nn.Linear(input_size, l1_size)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(l1_size, l2_size)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(l2_size, output_size)
def forward(self, x):
out = self.fc1(x)
out = self.relu1(out)
out = self.fc2(out)
out = self.relu2(out)
out = self.fc3(out)
return out
model = FeedForwardNet(5 , 3)
# sgd optimizer
optimizer = torch.optim.SGD(model.parameters(), learning_rate, momentum=0.9)
for epoch in range(11):
print ('Epoch ', epoch)
for i in range(trainX_light.shape[0]):
X = Variable( torch.from_numpy(trainX_light[i]).view(-1, 3) )
Y = Variable( torch.from_numpy(trainY_light[i]).view(-1, 1) )
# forward
optimizer.zero_grad()
output = model(X)
loss = (Y - output).pow(2).sum()
print (output.data[0,0])
loss.backward()
optimizer.step()
totalnorm = 0
for p in model.parameters():
modulenorm = p.grad.data.norm()
totalnorm += modulenorm ** 2
totalnorm = math.sqrt(totalnorm)
print (totalnorm)
# validation code
if (epoch + 1) % 5 == 0:
print (' test points',testX_light.shape[0])
total_loss = 0
for t in range(testX_light.shape[0]):
X = Variable( torch.from_numpy(testX_light[t]).view(-1, 3) )
Y = Variable( torch.from_numpy(testY_light[t]).view(-1, 1) )
output = model(X)
loss = (Y - output).pow(2).sum()
print (output.data[0,0])
total_loss += loss
print ('epoch ', epoch, 'avg_loss ', total_loss.data[0] / testX_light.shape[0])
print ('Done')
The problem that I have now is, the validation code
output = model(X)
is always producing an exact same output value (I guess this value is some sort of garbage). I am not sure what mistake I am doing in this part. Could some help me figure out the mistake in my code?
Upvotes: 0
Views: 1181
Reputation: 303
The reason that network produced random values (and inf
later) was the exploding gradient problem. Clipping the gradient (torch.nn.utils.clip_grad_norm(model.parameters(), 0.1))
helped.
Upvotes: 1