Reputation: 2142
Simply put, what I'm trying to do is similar to this question: Convert RGB image to index image, but instead of 1-channel index image, I want to get n-channel image where img[h, w]
is a one-hot encoded vector. For example, if the input image is [[[0, 0, 0], [255, 255, 255]]
, and index 0 is assigned to black and 1 is assigned to white, then the desired output is [[[1, 0], [0, 1]]]
.
Like the previous person asked the question, I have implemented this naively, but the code runs quite slowly, and I believe a proper solution using numpy would be significantly faster.
Also, as suggested in the previous post, I can preprocess each image into grayscale and one-hot encode the image, but I want a more general solution.
Say I want to assign white to 0, red to 1, blue to 2, and yellow to 3:
(255, 255, 255): 0
(255, 0, 0): 1
(0, 0, 255): 2
(255, 255, 0): 3
, and I have an image which consists of those four colors, where image is a 3D array containing R, G, B values for each pixel:
[
[[255, 255, 255], [255, 255, 255], [255, 0, 0], [255, 0, 0]],
[[ 0, 0, 255], [255, 255, 255], [255, 0, 0], [255, 0, 0]],
[[ 0, 0, 255], [ 0, 0, 255], [255, 255, 255], [255, 255, 255]],
[[255, 255, 255], [255, 255, 255], [255, 255, 0], [255, 255, 0]]
]
, and this is what I want to get where each pixel is changed to one-hot encoded values of index. (Since changing a 2d array of index values to 3d array of one-hot encoded values is easy, getting a 2d array of index values is fine too.)
[
[[1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]],
[[0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]],
[[0, 0, 1, 0], [0, 0, 1, 0], [1, 0, 0, 0], [1, 0, 0, 0]],
[[1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1]]
]
In this example I used colors where RGB components are either 255 or 0, but I don't want to solutions rely on that fact.
Upvotes: 5
Views: 7391
Reputation: 40618
A simple implementation involves masking the relevant pixel positions, whether it's for converting from label to color or vice-versa. I show here how to convert between dense
(1-channel labels), OHE
(one-hot-encoding sparse), and RGB
formats. Essentially performing OHE<->RGB<->dense
.
Having defined your RGB-encoded input as rgb
.
First define the color label to color mapping (no need for a dict here):
>>> colors = np.array([[ 255, 255, 255],
[ 255, 0, 0],
[ 0, 0, 255],
[ 255, 255, 0]])
RGB
(h, w, 3) to dense
(h, w)dense = np.zeros(seg.shape[:2])
for label, color in enumerate(colors):
dense[np.all(seg == color, axis=-1)] = label
RGB
(h, w, 3) to OHE
(h, w, #classes)Similar to the previous conversion, RGB to one-hot-encoding requires two additional lines:
ohe = np.zeros((*seg.shape[:2], len(colors)))
for label, color in enumerate(colors):
v = np.zeros(len(colors))
v[label] = 1
ohe[np.all(seg == color, axis=-1)] = v
dense
(h, w) to RGB
(h, w, 3)rgb = np.zeros((*labels.shape, 3))
for label, color in enumerate(colors):
rgb[labels == label] = color
OHE
(h, w, #classes) to RGB
(h, w, 3)Converting from OHE to dense requires one line:
dense = ohe.argmax(-1)
Then you can simply follow dense->RGB
.
Upvotes: 0
Reputation: 35
My solution looks like this and should work for arbitrary colors:
color_dict = {0: (0, 255, 255),
1: (255, 255, 0),
....}
def rgb_to_onehot(rgb_arr, color_dict):
num_classes = len(color_dict)
shape = rgb_arr.shape[:2]+(num_classes,)
arr = np.zeros( shape, dtype=np.int8 )
for i, cls in enumerate(color_dict):
arr[:,:,i] = np.all(rgb_arr.reshape( (-1,3) ) == color_dict[i], axis=1).reshape(shape[:2])
return arr
def onehot_to_rgb(onehot, color_dict):
single_layer = np.argmax(onehot, axis=-1)
output = np.zeros( onehot.shape[:2]+(3,) )
for k in color_dict.keys():
output[single_layer==k] = color_dict[k]
return np.uint8(output)
I haven't tested it for speed yet, but at least, it works :)
Upvotes: 1
Reputation: 221514
We could generate the decimal equivalents of each pixel color. With each channel having 0
or 255
as the value, there would be total 8
possibilities, but it seems we are only interested in four of those colors.
Then, we would have two ways to solve it :
One would involve making unique indices from those decimal equivalents starting from 0
till the final color, all in sequence and finally initializing an output array and assigning into it.
Other way would be to use broadcasted
comparisons of those decimal equivalents against the colors.
These two methods are listed next -
def indexing_based(a):
b = (a == 255).dot([4,2,1]) # Decimal equivalents
colors = np.array([7,4,1,6]) # Define colors decimal equivalents here
idx = np.empty(colors.max()+1,dtype=int)
idx[colors] = np.arange(len(colors))
m,n,r = a.shape
out = np.zeros((m,n,len(colors)), dtype=int)
out[np.arange(m)[:,None], np.arange(n), idx[b]] = 1
return out
def broadcasting_based(a):
b = (a == 255).dot([4,2,1]) # Decimal equivalents
colors = np.array([7,4,1,6]) # Define colors decimal equivalents here
return (b[...,None] == colors).astype(int)
Sample run -
>>> a = np.array([
... [[255, 255, 255], [255, 255, 255], [255, 0, 0], [255, 0, 0]],
... [[ 0, 0, 255], [255, 255, 255], [255, 0, 0], [255, 0, 0]],
... [[ 0, 0, 255], [ 0, 0, 255], [255, 255, 255], [255, 255, 255]],
... [[255, 255, 255], [255, 255, 255], [255, 255, 0], [255, 255, 0]],
... [[255, 255, 255], [255, 0, 0], [255, 255, 0], [255, 0 , 0]]])
>>> indexing_based(a)
array([[[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]],
[[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]],
[[0, 0, 1, 0],
[0, 0, 1, 0],
[1, 0, 0, 0],
[1, 0, 0, 0]],
[[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 0, 1]],
[[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 1, 0, 0]]])
>>> np.allclose(broadcasting_based(a), indexing_based(a))
True
Upvotes: 0