Reputation: 2904
I want to read a pipe delimited file, process the data, and generate a result in CSV format.
Input file data
A|1|Pass
B|2|Fail
A|3|Fail
C|6|Pass
A|8|Pass
B|10|Fail
C|25|Pass
A|12|Fail
C|26|Pass
C|26|Fail
I'm want to apply a group by function on column 1 and column 3 and generate column 2's sum according to a particular group.
I'm stuck at the point of how to maintain the records to apply the group by function:
use std::fs::File;
use std::io::{BufReader};
use std::io::{BufRead};
use std::collections::HashMap;
fn say_hello(id: &str, value: i32, no_change : i32) {
if no_change == 101 {
let mut data = HashMap::new();
}
if value == 0 {
if data.contains_key(id) {
for (key, value) in &data {
if value.is_empty() {
}
}
} else {
data.insert(id,"");
}
} else if value == 2 {
if data.contains_key(id) {
for (key, value) in &data {
if value.is_empty() {
} else {
}
}
} else {
data.insert(id,"");
}
}
}
fn main() {
let f = File::open("sample2.txt").expect("Unable to open file");
let br = BufReader::new(f);
let mut no_change = 101;
for line in br.lines() {
let mut index = 0;
for value in line.unwrap().split('|') {
say_hello(&value,index,no_change);
index = index + 1;
}
}
}
I'm expecting a result like:
name,result,num
A,Fail,15
A,Pass,9
B,Fail,12
C,Fail,26
C,Pass,57
Is there any specific technique to read a pipe-delimited file and process the data like above? Python's pandas accomplished this requirement but I want to do it in Rust.
Upvotes: 0
Views: 2280
Reputation: 431589
As was mentioned, use the csv crate to do the heavy lifting of parsing the file. Then it's just a matter of grouping each row by using a BTreeMap
which also helpfully performs sorting. The entry API helps efficiently insert into the BTreeMap
.
extern crate csv;
extern crate rustc_serialize;
use std::fs::File;
use std::collections::BTreeMap;
#[derive(Debug, RustcDecodable)]
struct Record {
name: String,
value: i32,
passed: String,
}
fn main() {
let file = File::open("input").expect("Couldn't open input");
let mut csv_file = csv::Reader::from_reader(file).delimiter(b'|').has_headers(false);
let mut sums = BTreeMap::new();
for record in csv_file.decode() {
let record: Record = record.expect("Could not parse input file");
let key = (record.name, record.passed);
*sums.entry(key).or_insert(0) += record.value;
}
println!("name,result,num");
for ((name, passed), sum) in sums {
println!("{},{},{}", name, passed, sum);
}
}
You'll note that the output is correct:
name,result,num
A,Fail,15
A,Pass,9
B,Fail,12
C,Fail,26
C,Pass,57
Upvotes: 2
Reputation: 2701
I'd suggest something like this:
use std::str;
use std::collections::HashMap;
use std::io::{BufReader, BufRead, Cursor};
fn main() {
let data = "
A|1|Pass
B|2|Fail
A|3|Fail
C|6|Pass
A|8|Pass
B|10|Fail
C|25|Pass
A|12|Fail
C|26|Pass
C|26|Fail";
let lines = BufReader::new(Cursor::new(data))
.lines()
.flat_map(Result::ok)
.flat_map(parse_line);
for ((fa, fb), s) in group(lines) {
println!("{}|{}|{}", fa, fb, s);
}
}
type ParsedLine = ((String, String), usize);
fn parse_line(line: String) -> Option<ParsedLine> {
let mut fields = line
.split('|')
.map(str::trim);
if let (Some(fa), Some(fb), Some(fc)) = (fields.next(), fields.next(), fields.next()) {
fb.parse()
.ok()
.map(|v| ((fa.to_string(), fc.to_string()), v))
} else {
None
}
}
fn group<I>(input: I) -> Vec<ParsedLine> where I: Iterator<Item = ParsedLine> {
let mut table = HashMap::new();
for (k, v) in input {
let mut sum = table.entry(k).or_insert(0);
*sum += v;
}
let mut output: Vec<_> = table
.into_iter()
.collect();
output.sort_by(|a, b| a.0.cmp(&b.0));
output
}
Here a HashMap
is used for grouping entries and then results are moved to a Vec
for sorting.
Upvotes: 1