Reputation: 1690
I have a df with several boolean columns, here is an excerpt:
L1 MATCH L2 MATCH L3 MATCH L4 MATCH L5 MATCH
0 True True True False False
1 True True False False False
2 True True True True False
3 True False True True False
4 True True False True False
I would like to obtain the counts of True vs False for each of those columns as follows (or similar). If easier, I would take the transpose of the below as well.
True False
L1 MATCH 12345 6789
L2 MATCH 12345 6789
L3 MATCH 12345 6789
L4 MATCH 12345 6789
L5 MATCH 12345 6789
Upvotes: 2
Views: 53
Reputation: 153460
Let's use pd.concat
and sum
:
pd.concat([df.sum(),(~df).sum()], axis=1, keys=['True','False'])
Output:
True False
L1 MATCH 5 0
L2 MATCH 4 1
L3 MATCH 3 2
L4 MATCH 3 2
L5 MATCH 0 5
Upvotes: 2