Reputation: 497
I have a list of multiple regressions completed via this code using the standard dataset mtcars
.
models <- lapply(paste("mpg", names(mtcars)[-1], sep = "~"), formula)
res.models <- lapply(models, FUN = function(x) {summary(lm(formula = x, data = mtcars))})
names(res.models) <- paste("mpg", names(mtcars)[-1], sep = "~")
Where I now have a list of multiple regressions against the first column "mpg". From here I am trying to export certain summary statistics such as; intercept, coefficient and r.squared.
I have tried using a loop which I've included below.
for (i in 1:length(res.models))
{
res <- res.models[[i]]
res_bound <- NULL
intercept <- res$coefficients[1]
coef <- res$coefficients[2]
r <- res$r.squared
res_bound <- cbind(intercept, coef, r)
}
Although this gets me a dataframe
it only includes the results from the last regression model, a 1 row by 3 column dataframe
. Furthermore, I would like to have the "terms" of each regression in the table to distinguish between which model I am looking at (e.g. mpg vs cyl or mpg vs hp).
Am I simply missing a step in my loop? The ultimate goal is to write.csv
the final dataframe
.
Upvotes: 1
Views: 2824
Reputation: 5335
If you want to do it in base R:
res <- lapply(seq_along(res.models), function(i) {
data.frame(model = names(res.models)[i],
intercept = res.models[[i]]$coefficients[1],
coef = res.models[[i]]$coefficients[2],
r = res.models[[i]]$r.squared,
stringsAsFactors = FALSE)
})
do.call(rbind, res)
Output:
model intercept coef r
1 mpg~cyl 37.884576 -2.87579014 0.7261800
2 mpg~disp 29.599855 -0.04121512 0.7183433
3 mpg~hp 30.098861 -0.06822828 0.6024373
4 mpg~drat -7.524618 7.67823260 0.4639952
5 mpg~wt 37.285126 -5.34447157 0.7528328
6 mpg~qsec -5.114038 1.41212484 0.1752963
7 mpg~vs 16.616667 7.94047619 0.4409477
8 mpg~am 17.147368 7.24493927 0.3597989
9 mpg~gear 5.623333 3.92333333 0.2306734
10 mpg~carb 25.872334 -2.05571870 0.3035184
The reason for seq_along(res.models)
instead of just res.models
is so we can also grab the name for the associated slot in the list and drop it into the data frame you're making.
Upvotes: 3
Reputation: 43334
You can use purrr::map_df
to apply broom::glance
to each model and then collect the results into a data.frame:
purrr::map_df(res.models, broom::glance, .id = 'formula')
#> formula r.squared adj.r.squared sigma statistic p.value df
#> 1 mpg~cyl 0.7261800 0.7170527 3.205902 79.561028 6.112687e-10 2
#> 2 mpg~disp 0.7183433 0.7089548 3.251454 76.512660 9.380327e-10 2
#> 3 mpg~hp 0.6024373 0.5891853 3.862962 45.459803 1.787835e-07 2
#> 4 mpg~drat 0.4639952 0.4461283 4.485409 25.969645 1.776240e-05 2
#> 5 mpg~wt 0.7528328 0.7445939 3.045882 91.375325 1.293959e-10 2
#> 6 mpg~qsec 0.1752963 0.1478062 5.563738 6.376702 1.708199e-02 2
#> 7 mpg~vs 0.4409477 0.4223126 4.580827 23.662241 3.415937e-05 2
#> 8 mpg~am 0.3597989 0.3384589 4.902029 16.860279 2.850207e-04 2
#> 9 mpg~gear 0.2306734 0.2050292 5.373695 8.995144 5.400948e-03 2
#> 10 mpg~carb 0.3035184 0.2803024 5.112961 13.073646 1.084446e-03 2
You could do something similar with broom::tidy
for the coefficients, or broom::augment
for the residuals. Note that broom functions are intended to be called on the models themselves, not the summaries, but you can keep the whole thing in a pipeline, if you like:
library(purrr)
names(mtcars)[-1] %>%
paste('mpg ~', .) %>% # or start with `models` at this point
map(lm, data = mtcars) %>%
map_df(broom::glance, .id = 'formula')
#> formula r.squared adj.r.squared sigma statistic p.value df
#> 1 1 0.7261800 0.7170527 3.205902 79.561028 6.112687e-10 2
#> 2 2 0.7183433 0.7089548 3.251454 76.512660 9.380327e-10 2
#> 3 3 0.6024373 0.5891853 3.862962 45.459803 1.787835e-07 2
#> 4 4 0.4639952 0.4461283 4.485409 25.969645 1.776240e-05 2
#> 5 5 0.7528328 0.7445939 3.045882 91.375325 1.293959e-10 2
#> 6 6 0.1752963 0.1478062 5.563738 6.376702 1.708199e-02 2
#> 7 7 0.4409477 0.4223126 4.580827 23.662241 3.415937e-05 2
#> 8 8 0.3597989 0.3384589 4.902029 16.860279 2.850207e-04 2
#> 9 9 0.2306734 0.2050292 5.373695 8.995144 5.400948e-03 2
#> 10 10 0.3035184 0.2803024 5.112961 13.073646 1.084446e-03 2
#> logLik AIC BIC deviance df.residual
#> 1 -81.65321 169.3064 173.7036 308.3342 30
#> 2 -82.10469 170.2094 174.6066 317.1587 30
#> 3 -87.61931 181.2386 185.6358 447.6743 30
#> 4 -92.39996 190.7999 195.1971 603.5667 30
#> 5 -80.01471 166.0294 170.4266 278.3219 30
#> 6 -99.29406 204.5881 208.9853 928.6553 30
#> 7 -93.07356 192.1471 196.5443 629.5193 30
#> 8 -95.24219 196.4844 200.8816 720.8966 30
#> 9 -98.18192 202.3638 206.7611 866.2980 30
#> 10 -96.59033 199.1807 203.5779 784.2711 30
Note you get a few extra variables that can't aren't contained in the summary.
Upvotes: 5