Reputation: 11
I want to implement a simple TCP server with blocking read, that receives messages sent from a client character by character until a separator. Once a message is received, it has to wait until the next message appears. Here is my pseudocode:
// Messages sent from the client
char *message1 = "mssg1\n"
char *message2 = "mssg2\n"
// On server side
char buffer;
char completeMessage[5]
while(1){
while(buffer != '\n'){
recv(sock, &buffer, 1, 0); // 1 is the read size
if(buffer != '\n') {
printf("buffer: %c\n", buffer);
completeMessage[n] = buffer;
count ++;
}
else{
printf("Complete message: %s\n", completeMessage);
count = 0;
}
}
}
And the result is the following:
buffer: m
buffer: s
buffer: s
buffer: g
buffer: 1
Complete message: mssg1
buffer:
buffer:
buffer:
buffer:
buffer:
buffer:
// Error due to buffer overflow
I don't know why recv instead of waiting for the next message character (blocking read), it continues reading blank spaces. My questions are the following:
Upvotes: 1
Views: 1373
Reputation: 595742
There are quite a number of problems with your code, namely that you are ignoring the return value of recv()
, you are not null-terminating your buffer
before printing it, and you are not protecting yourself from a buffer overflow.
Try something more like this instead:
char ch, *tmp, *message = NULL;
int ret, length = 0, allocated = 0;
while (1)
{
ret = recv(sock, &ch, 1, 0);
if (ret <= 0)
{
if (ret < 0)
printf("Read error: %d\n", errno); // or WSAGetLastError() on Windows
else
printf("Client disconnected\n");
break;
}
if (ch == '\n')
{
if ((length > 0) && (message[length-1] == '\r'))
--length;
printf("Complete message: '%.*s'\n", length, message);
length = 0;
}
else
{
printf("ch: %c\n", ch);
if (length == allocated)
{
if (length >= 5000) // some max length of your choosing...
{
printf("Message length too large!\n");
break;
}
// just for example. You should use a more robust growth algorithm in production code...
tmp = (char*) realloc(message, allocated + 10);
if (!tmp)
{
printf("Memory allocation failed\n");
break;
}
message = tmp;
allocated += 10;
}
message[length] = ch;
++length;
}
}
free(message);
Alternatively, don't read char-by-char. Read as much data as you can from the socket on any given read and store it all in a growing buffer, and then scan that buffer for complete messages, eg:
char *buffer = (char*) malloc(100);
if (!buffer)
{
printf("Memory allocation failed\n");
}
else
{
int ret, offset, remaining, inbuf = 0, allocated = 100;
char *ptr;
while (1)
{
if (inbuf == allocated)
{
if (inbuf >= 5000) // some max length of your choosing...
{
printf("Buffer length too large!\n");
break;
}
// just for example. You should use a more robust growth algorithm in production code...
tmp = (char*) realloc(buffer, allocated + 100);
if (!tmp)
{
printf("Memory allocation failed\n");
break;
}
buffer = tmp;
allocated += 100;
}
ret = recv(sock, buffer+inbuf, allocated-inbuf, 0);
if (ret <= 0)
{
if (ret < 0)
printf("Read error: %d\n", errno); // or WSAGetLastError() on Windows
else
printf("Client disconnected\n");
break;
}
printf("Received: %.*s\n", ret, buffer+inbuf);
inbuf += ret;
while (ptr = (char*)memchr(buffer, '\n', inbuf))
{
offset = (ptr-buffer);
if ((offset > 0) && (buffer[offset-1] == '\r'))
--offset;
printf("Complete message: '%.s'\n", offset, buffer);
++ptr;
remaining = (inbuf - (ptr - buffer));
if (remaining > 0)
memmove(buffer, ptr, remaining);
inbuf = remaining;
}
}
free(buffer);
}
Upvotes: 2
Reputation: 385645
Is recv really a socket blocking read function?
Yes, unless you made the handle non-blocking.
Is there something wrong or missing in the code?,
You're not checking what recv
returns. 0
indicates EOF, and -1
indicates an error.
You don't check how full your buffer is, so you risk buffer overflows.
You're not terminating the string in completeMessage
with a NUL as required by printf %s
.
Any other suggestions for implementing this?
You shouldn't read a character at a time!
#define BUFFER_SIZE (64*1024)
char* extract_string(const char* start, const char* end) {
size_t len = end - start;
char* dst = malloc(len+1);
if (dst == NULL)
return NULL;
memcpy(dst, src, len);
dst[len] = '\0';
return dst;
}
{
char buf_start[BUFFER_SIZE];
char* buf_end = buf_start + BUFFER_SIZE;
char* window_start = buf_start;
char* window_end = buf_start;
while (1) {
if (window_end == buf_end) { // No more space.
fprintf(stderr, "Overly large message");
return 0;
}
ssize_t rv = recv(sock, window_end, buf_end-window_end, 0);
if (rv == -1) { // Error.
perror("recv");
return 0;
}
if (rv == 0) { // EOF.
return 1;
}
while (rv--) {
if (*(window_end++) == '\n') {
char* msg = extract_string(window_start, window_end-1); // Excl LF.
if (msg == NULL) {
fprintf(stderr, "Out of memory");
return 0;
}
// Do something with msg
printf("Complete message: %s\n", msg);
free(msg);
window_start = window_end;
}
}
memmove(buf_start, window_start, window_end-window_start);
window_end -= (window_start - buf_start);
window_start = buf_start;
}
}
Upvotes: 2