Reputation: 97
I'm currently trying to animate a scatterplot of monthly data saved in a pandas dataframe. So far I made loop, which generates one single plot after another. Now I would like to join them in a single gif (or mp4 I don't care). Is there an easy way to make use of mathplotlibs animation function? I can't get my head around, how to loop sliced data through FuncAnimation. So far I did this:
time = df.monat.unique()
for i in time:
dft = df[(df.monat == i) & (df.xcol < 4000)]
plt.scatter(x=dft['xcol'],
y=dft['ycol'],
s=dft['scol'] / 25,
c=dft['clr'],
linewidth=0,
alpha=0.8)
plt.title('Title ' + str(i), fontsize=10)
plt.xlabel('x label', fontsize=9)
plt.ylabel('y label', fontsize=9)
legend1_line2d = list()
for val in clrdict.values():
legend1_line2d.append(mlines.Line2D([0], [0],
linestyle='none',
marker='o',
alpha=0.6,
markersize=6,
markeredgecolor=None,
markeredgewidth=0,
markerfacecolor=val))
legend1 = plt.legend(legend1_line2d,
names,
frameon=False,
numpoints=1,
fontsize=8,
loc='upper right')
plt.show()
Upvotes: 3
Views: 2643
Reputation: 97
I figured it out by myself:
Generate an empty plot (fig). Like before all unique time-values are stored in a series(time). A simple counter (i) helps generating the correct slice of the data (dft) for each month (df.monat == a value from the series 'time') within the update-function. The update-function is called times the value of the frame-parameter in the anim.FuncAnimation (frames=len(time)).
Hope, this will be helpful for somebody else (most of the explanations for the matplotlib FuncAnimation I've found worked with random numbers - not with specific pandas columns):
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import matplotlib.animation as anim
...
time = df.monat.unique()
fig = plt.figure()
i = 1
def update(i):
plt.clf()
dft = df[(df.monat == time[i]) & (df.xcol < 4000)]
plt.scatter(x=dft['xcol'],
y=dft['ycol'],
s=dft['scol'] / 25,
c=dft['clr'],
linewidth=0,
alpha=0.8)
plt.title('Title ' + str(time[i]), fontsize=10)
plt.xlabel('x label', fontsize=9)
plt.ylabel('y label', fontsize=9)
plt.xlim(0, 900) # fixed dimensions x
plt.ylim(-5, 100) # fixed dimensions y
legend1_line2d = list()
for val in clrdict.values():
legend1_line2d.append(mlines.Line2D([0], [0],
linestyle='none',
marker='o',
alpha=0.6,
markersize=6,
markeredgecolor=None,
markeredgewidth=0,
markerfacecolor=val))
legend1 = plt.legend(legend1_line2d,
names,
frameon=False,
numpoints=1,
fontsize=8,
loc='upper right')
i += 1
ani = anim.FuncAnimation(fig, update, frames=len(time), interval=500)
# plt.show() # this will show the ani over and over
ani.save("test.mp4", dpi=200, fps=1, codec="libx264", bitrate=5000, extra_args=['-pix_fmt', 'yuv420p'])
Upvotes: 3