Reputation: 503
https://github.com/pandas-dev/pandas/pull/2708 says propagation of other types is working however, I'm unable to load my hex coded values into int32, they go into the dataframe as int64
data
2009-01-01T18:55:25Z,574,575,574,575,574,575,574,575,2,True
2009-01-01T18:56:55Z,574,575,574,575,573,574,573,574,2,True
2009-01-01T18:57:25Z,573,574,573,574,573,574,573,574,2,True
2009-01-01T18:57:30Z,573,574,573,574,573,574,573,574,2,True
2009-01-01T19:07:20Z,574,575,574,575,574,575,574,575,1,True
2009-01-01T19:07:55Z,574,575,574,575,574,575,574,575,1,True
names:
names = [
'datetime',
'sensorA',
'sensorB',
'sensorC',
...
'signal',
]
conversion function:
def hex2int(x):
return int(x, 16) * 100
converters:
convs = { i : hex2int for i in range(1,9) }
dtypes:
raw_dtypes = {
'datetime': datetime.datetime,
'sensorA': 'int32',
'sensorA': 'int32',
'sensorA': 'int32',
...
'signal': 'int32',
}
read_csv:
df = pd.read_csv(filepath, delimiter=',', header=None, names=names, dtype=raw_dtypes, usecols=range(0, NUM_COLS-1), converters=convs, parse_dates=['datetime'])
Result:
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1308 entries, 0 to 1307
Data columns (total 10 columns):
datetime 1308 non-null datetime64[ns]
sensorA 1308 non-null int64
sensorB 1308 non-null int64
sensorC 1308 non-null int64
sensorD 1308 non-null int64
sensorE 1308 non-null int64
sensorF 1308 non-null int64
sensorG 1308 non-null int64
sensorH 1308 non-null int64
signal 1308 non-null int32
dtypes: datetime64[ns](1), int32(1), int64(8)
The last column('signal') doesnt use a converter and uses the correct dtype according to the docs: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html ( If converters are specified, they will be applied INSTEAD of dtype conversion. )
I'm pretty sure I'm not overflowing anything into int64, my ranges are 160000 - 80000. I've tried casting the return from the converter as
return np.int32(x, 16) * 100
but that did not change anything
Upvotes: 2
Views: 2897
Reputation: 52236
As documentation says, if both a converter
and dtype
is specified for a column, only the converter
will be applied. I think in version 0.20
+ this generates a warning.
If a converter
is applied, the data in that column takes a generic inference path, as if you had passed pd.Series([...converted data ...]
, which uses int64 as the default.
So for now, the best you can do is cast the dtype after the fact. Something like:
df = df.astype({'sensorA': 'int32', 'sensorB': 'int32'}) #etc
Upvotes: 3