Reputation: 4428
I have a data.table with a large number of features. I would like to remove the rows where the values are NAs only for certain features.
Currently I am using the following to handle this:
data.joined.sample <- data.joined.sample %>%
filter(!is.na(lat)) %>%
filter(!is.na(long)) %>%
filter(!is.na(temp)) %>%
filter(!is.na(year)) %>%
filter(!is.na(month)) %>%
filter(!is.na(day)) %>%
filter(!is.na(hour)) %>%
.......
Is there a more concise way to achieve this?
str(data.joined.sample)
Classes ‘data.table’ and 'data.frame': 336776 obs. of 50 variables:
Upvotes: 1
Views: 1359
Reputation: 886968
We can select those columns, get a logical vector
of NA's based on it using complete.cases
and use that to remove the NA elements
data.joined.sample[complete.cases(data.joined.sample[colsofinterest]),]
where
colsofinterest <- c("lat", "long", "temp", "year", "month", "day", "hour")
Based on the OP's comments, if it is a data.table, then subset the colsofinterest
and use complete.cases
data.joined.sample[complete.cases(data.joined.sample[, colsofinterest, with = FALSE])]
Upvotes: 3
Reputation: 263311
data.table
-objects, if that is in fact what your working with, have a somewhat different syntax for the "[" function. Look through this console session:
> DT = data.table(x=rep(c("b","a","c"),each=3), y=c(1,3,6), v=1:9)
> DT[x=="a"&y==1]
x y v
1: a 1 4
> is.na(DT[x=="a"&y==1]$v) <- TRUE # make one item NA
> DT[x=="a"&y==1]
x y v
1: a 1 NA
> DT
x y v
1: b 1 1
2: b 3 2
3: b 6 3
4: a 1 NA
5: a 3 5
6: a 6 6
7: c 1 7
8: c 3 8
9: c 6 9
> DT[complete.cases(DT)] # note no comma
x y v
1: b 1 1
2: b 3 2
3: b 6 3
4: a 3 5
5: a 6 6
6: c 1 7
7: c 3 8
8: c 6 9
> DT # But that didn't remove the NA, it only gave a value
x y v
1: b 1 1
2: b 3 2
3: b 6 3
4: a 1 NA
5: a 3 5
6: a 6 6
7: c 1 7
8: c 3 8
9: c 6 9
> DT <- DT[complete.cases(DT)] # do this assignment to make permanent
> DT
x y v
1: b 1 1
2: b 3 2
3: b 6 3
4: a 3 5
5: a 6 6
6: c 1 7
7: c 3 8
8: c 6 9
Probably not the true "data.table way".
Upvotes: 2