Reputation: 2273
I would like to convert the following dataframe into a json .
df:
A sector B sector C sector
TTM Ratio -- 35.99 12.70 20.63 14.75 23.06
RRM Sales -- 114.57 1.51 5.02 1.00 4594.13
MQR book 1.48 2.64 1.02 2.46 2.73 2.74
TTR cash -- 14.33 7.41 15.35 8.59 513854.86
In order to do so by using the function df.to_json()
I would need to have unique names in column and indices.
Therefore what I am looking for is to convert the column names into a row and have default column numbers . In short I would like the following output:
df:
0 1 2 3 4 5
A sector B sector C sector
TTM Ratio -- 35.99 12.70 20.63 14.75 23.06
RRM Sales -- 114.57 1.51 5.02 1.00 4594.13
MQR book 1.48 2.64 1.02 2.46 2.73 2.74
TTR cash -- 14.33 7.41 15.35 8.59 513854.86
Turning the column names into the first row so I can make the conversion correctly .
Upvotes: 10
Views: 10178
Reputation: 91
You could also use vstack in numpy:
>>> df
x y z
0 8 7 6
1 6 5 4
>>> pd.DataFrame(np.vstack([df.columns, df]))
0 1 2
0 x y z
1 8 7 6
2 6 5 4
The columns become the actual first row in this case.
Upvotes: 9
Reputation: 863791
Use assign by list
of range
and original column names:
print (range(len(df.columns)))
range(0, 6)
#for python2 list can be omit
df.columns = [list(range(len(df.columns))), df.columns]
df.columns = pd.MultiIndex.from_arrays([range(len(df.columns)), df.columns])
Also is possible use RangeIndex
:
print (pd.RangeIndex(len(df.columns)))
RangeIndex(start=0, stop=6, step=1)
df.columns = pd.MultiIndex.from_arrays([pd.RangeIndex(len(df.columns)), df.columns])
print (df)
0 1 2 3 4 5
A sector B sector C sector
TTM Ratio -- 35.99 12.70 20.63 14.75 23.06
RRM Sales -- 114.57 1.51 5.02 1.00 4594.13
MQR book 1.48 2.64 1.02 2.46 2.73 2.74
TTR cash -- 14.33 7.41 15.35 8.59 513854.86
Upvotes: 5