manev
manev

Reputation: 63

Tuples to Pandas Dataframe Index and Columnes

I get the following tuples with my code:

('20170517  12:00:00', 2386.0, 2387.0, 2385.75, 2385.75, 9367)
('20170517  12:10:00', 2386.25, 2386.25, 2385.0, 2385.25, 7126)
('20170517  12:20:00', 2385.0, 2386.0, 2384.75, 2385.0, 7546)
('20170517  12:30:00', 2385.25, 2385.5, 2384.5, 2384.75, 10492)
('20170517  12:40:00', 2384.75, 2385.75, 2384.25, 2384.25, 7792)
('20170517  12:50:00', 2384.25, 2385.5, 2384.0, 2385.25, 10444)
('20170517  13:00:00', 2385.25, 2385.5, 2384.75, 2385.25, 6508)
('20170517  13:10:00', 2385.25, 2385.75, 2385.0, 2385.25, 8363)
('20170517  13:20:00', 2385.25, 2385.75, 2385.25, 2385.25, 7093)
('20170517  13:30:00', 2385.5, 2386.0, 2385.25, 2385.5, 6724)
('20170517  13:40:00', 2385.5, 2385.5, 2385.0, 2385.5, 8856)
('20170517  13:50:00', 2385.25, 2385.5, 2384.75, 2385.25, 9058)

I convert the tuples to Dataframe with the this code:

df = pd.DataFrame(data, columns=['Date', 'Open', 'Close', 'High', 'Low', 'Volume'])

and I get:

               Date     Open    Close     High      Low       Volume

222  20170517  12:00:00  2386.00  2387.00  2385.75  2385.75    9367
223  20170517  12:10:00  2386.25  2386.25  2385.00  2385.25    7126
224  20170517  12:20:00  2385.00  2386.00  2384.75  2385.00    7546
225  20170517  12:30:00  2385.25  2385.50  2384.50  2384.75   10492
226  20170517  12:40:00  2384.75  2385.75  2384.25  2384.25    7792
227  20170517  12:50:00  2384.25  2385.50  2384.00  2385.25   10444
228  20170517  13:00:00  2385.25  2385.50  2384.75  2385.25    6508
229  20170517  13:10:00  2385.25  2385.75  2385.00  2385.25    8363
230  20170517  13:20:00  2385.25  2385.75  2385.25  2385.25    7093
231  20170517  13:30:00  2385.50  2386.00  2385.25  2385.50    6724
232  20170517  13:40:00  2385.50  2385.50  2385.00  2385.50    8856
233  20170517  13:50:00  2385.25  2385.50  2384.75  2385.50    9181
234  20170517  14:00:00  2385.25  2385.75  2385.00  2385.50    2667

The only problem i got is that I don't know how to set the Date column to Index. Anyone?

Upvotes: 0

Views: 185

Answers (1)

manev
manev

Reputation: 63

Conveniently, there's a set_index function that allows you to specify a column as the index.

df2 = df.set_index('Date')

Upvotes: 1

Related Questions