Reputation: 175
I have three lists filled with data and I would like to concatenate them to create a dataframe
type of data_activationsLV : list
type of data_activationsF : list
type of data_activationsPC : list
The structure of the data for the three lists :
data_activationsLV data_activationsF data_activationsPC
index a index b index c
14468 7.8 14468 7.2 14468 7.6
14469 7.8 14469 7.1 14469 7.0
14470 7.9 14470 7.9 14470 8.1
14471 8.2 14471 9.5 14471 9.9
..
I transform them into series and concate them :
df15LV = pd.Series(data_activationsLV)
df15F = pd.Series(data_activationsF)
df15PC = pd.Series(data_activationsPC)
dfnew2=pd.concat([df15LV,df15F,df15PC], ignore_index=True, axis=1)
by cons here I have a problem, in each column, it considers the name of the old column and its index with the value
index 0 1 2
0 a14468 7.8 b14468 7.2 c14468 7.6
1 a14469 7.8 b14469 7.1 c14469 7.0
2 a14470 7.9 b14470 7.9 c14470 8.1
3 a14471 8.2 b14471 9.5 c14471 9.9
So I tested the split function :
dfnew2['a'] = dfnew2[2].split(' ')
But it did not work,When I try to split those columns, this is what happens:
AttributeError: 'Series' object has no attribute 'split'
Is it possible to have only the values for each columns:
index df15LV df15F df15PC
0 7.8 7.2 7.6
1 7.8 7.1 7.0
2 7.9 7.9 8.1
3 8.2 9.5 9.9
Upvotes: 2
Views: 5517
Reputation: 863236
I think you need for splitting apply
with str.split
and selecting with str[1]
:
print (data_activationsLV)
['14468 7.8', '14469 7.8']
print (data_activationsF)
['14468 7.2', '14469 7.1', '14470 7.9', '14471 9.5']
print (data_activationsPC)
['14468 7.6', '14470 8.1', '14471 9.9']
df15LV = pd.Series(data_activationsLV)
df15F = pd.Series(data_activationsF)
df15PC = pd.Series(data_activationsPC)
dfnew2=pd.concat([df15LV,df15F,df15PC], axis=1)
dfnew2 = dfnew2.apply(lambda x: x.str.split().str[1])
#if necessary convert to float
dfnew2 = dfnew2.astype(float)
print (dfnew2)
0 1 2
0 7.8 7.2 7.6
1 7.8 7.1 8.1
2 NaN 7.9 9.9
3 NaN 9.5 NaN
Another solution is use list comprehension
for splitting:
print (data_activationsLV)
['7.8', '7.8']
print (data_activationsF)
['7.2', '7.1', '7.9', '9.5']
print (data_activationsPC)
['7.6', '8.1', '9.9']
df15LV = pd.Series(data_activationsLV)
df15F = pd.Series(data_activationsF)
df15PC = pd.Series(data_activationsPC)
dfnew2=pd.concat([df15LV,df15F,df15PC], axis=1)
#if necessary convert to float
dfnew2 = dfnew2.astype(float)
print (dfnew2)
0 1 2
0 7.8 7.2 7.6
1 7.8 7.1 8.1
2 NaN 7.9 9.9
3 NaN 9.5 NaN
Upvotes: 2
Reputation: 1
if you have lists of equal length, you could just create an empty dataframe and fill it:
data_activationsLV = [7.8,7.8,7.9,8.2]
data_activationsF = [7.2,7.1,7.9,9.5]
# create an empty dataframe
columns = ['LV', 'F']
index = np.arange(len(data_activationsLV)) # array of numbers for the number of rows
df = pd.DataFrame(columns=columns, index = index)
df['LV'] = data_activationsLV
df['F'] = data_activationsF
df
Upvotes: 0