Reputation: 2404
I'm getting predictions through spark.ml.classification.LogisticRegressionModel.predict
. A number of the rows have the prediction
column as 1.0
and probability
column as .04
. The model.getThreshold
is 0.5
so I'd assume the model is classifying everything over a 0.5
probability threshold as 1.0
.
How am I supposed to interpret a result with a 1.0 prediction
and a probability
of 0.04?
Upvotes: 5
Views: 5613
Reputation: 28332
The probability column from performing a LogisticRegression
should contain a list with the same length as the number of classes, where each index gives the corresponding probability for that class. I made a small example with two classes for illustration:
case class Person(label: Double, age: Double, height: Double, weight: Double)
val df = List(Person(0.0, 15, 175, 67),
Person(0.0, 30, 190, 100),
Person(1.0, 40, 155, 57),
Person(1.0, 50, 160, 56),
Person(0.0, 15, 170, 56),
Person(1.0, 80, 180, 88)).toDF()
val assembler = new VectorAssembler().setInputCols(Array("age", "height", "weight"))
.setOutputCol("features")
.select("label", "features")
val df2 = assembler.transform(df)
df2.show
+-----+------------------+
|label| features|
+-----+------------------+
| 0.0| [15.0,175.0,67.0]|
| 0.0|[30.0,190.0,100.0]|
| 1.0| [40.0,155.0,57.0]|
| 1.0| [50.0,160.0,56.0]|
| 0.0| [15.0,170.0,56.0]|
| 1.0| [80.0,180.0,88.0]|
+-----+------------------+
val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
val Array(testing, training) = df2.randomSplit(Array(0.7, 0.3))
val model = lr.fit(training)
val predictions = model.transform(testing)
predictions.select("probability", "prediction").show(false)
+----------------------------------------+----------+
|probability |prediction|
+----------------------------------------+----------+
|[0.7487950501224138,0.2512049498775863] |0.0 |
|[0.6458452667523259,0.35415473324767416]|0.0 |
|[0.3888393314864866,0.6111606685135134] |1.0 |
+----------------------------------------+----------+
Here are the probabilities as well as the final prediction made by the algorithm. The class that have the highest probability in the end is the one predicted.
Upvotes: 7