Reputation: 165
I'm having difficulties multiplying elements of columns in a SQL data frame.
sv1 = Vectors.sparse(3, [0, 2], [1.0, 3.0])
sv2 = Vectors.sparse(3, [0, 1], [2.0, 4.0])
def xByY(x,y):
return np.multiply(x,y)
print(xByY(sv1, sv2))
The above works.
But the below doesn't.
xByY_udf = udf(xByY)
tempDF = sqlContext.createDataFrame([(sv1, sv2), (sv1, sv2)], ('v1', 'v2'))
tempDF.show()
print(tempDF.select(xByY_udf('v1', 'v2')).show())
Many thanks!
Upvotes: 3
Views: 2769
Reputation: 24178
If you want your udf
to return a SparseVector
, we'll first need to modify the output of your function, and secondly set the output schema of the udf
to VectorUDT()
:
To declare a SparseVector
, we need the size of the original array, and both the indices and the values of the non-zero elements. We can find these using len()
and list comprehensions if the intermediate result of the multiplication is a list
:
from pyspark.ml.linalg import Vectors, VectorUDT
def xByY(x,y):
res = np.multiply(x,y).tolist()
vec_args = len(res), [i for i,x in enumerate(res) if x != 0], [x for x in res if x != 0]
return Vectors.sparse(*vec_args)
Now we can declare our udf
and test it:
xByY_udf = udf(xByY, VectorUDT())
tempDF.select(xByY_udf('v1', 'v2')).show()
+-------------+
| xByY(v1, v2)|
+-------------+
|(3,[0],[2.0])|
|(3,[0],[2.0])|
+-------------+
Upvotes: 4