Reputation: 2129
Trying to slice and average a numpy array multiple times, based on an integer mask array:
i.e.
import numpy as np
data = np.arange(11)
mask = np.array([0, 1, 1, 1, 0, 2, 2, 3, 3, 3, 3])
results = list()
for maskid in range(1,4):
result = np.average(data[mask==maskid])
results.append(result)
output = np.array(result)
Is there a way to do this faster, aka without the "for" loop?
Upvotes: 1
Views: 406
Reputation: 221514
One approach using np.bincount
-
np.bincount(mask, data)/np.bincount(mask)
Another one with np.unique
for a generic case when the elements in mask
aren't necessarily sequential starting from 0
-
_,ids, count = np.unique(mask, return_inverse=1, return_counts=1)
out = np.bincount(ids, data)/count
Upvotes: 1