Reputation: 29
I am trying to implement bootstrap to estimate CI for statistics. Here is the code I have written
import numpy as np
import numpy.random as npr
import pylab
def bootstrap(data, num_samples, statistic, alpha):
"""Returns bootstrap estimate of 100.0*(1-alpha) CI for statistic."""
num_samples = len(data)
idx = npr.randint(min(data), max(data), num_samples)
samples = data[idx]
stat = np.sort(statistic(samples, 1))
return (stat[int((alpha/2.0)*num_samples)],
stat[int((1-alpha/2.0)*num_samples)])
X,Y = np.loadtxt('data/ABC.txt',
unpack =True,
delimiter =',',
skiprows = 1)
The text file contains 2 columns and I need to calculate the confidence interval for both columns. My first thought is to convert the columns into an array and calculate the high and low 95% CI. I was thinking of something like this:
data = np.array([X,Y])
low, high = bootstrap(X, len(data), np.mean, 0.05)
low1, high1 = bootstrap(Y, len(data), np.mean, 0.05)
But I am not sure if this the correct way of calculating confidence interval. Can someone help me with this?
Thank you in advance!
Upvotes: 1
Views: 1477
Reputation: 21
Instead of :
idx = npr.randint(min(data), max(data), num_samples)
Use:
idx=np.random.choice(data,size=len(data),replace=True)
Upvotes: 2