Reputation: 21
i am trying to impute missing values in pandas dataframe using linear regression
`
for index in [missing_data_df.horsepower.index]:
i = 0
if pd.isnull(missing_data_df.horsepower[index[i]]):
#linear regression equation
a = 0.25743277 * missing_data_df.displacement[index[i]] + 0.00958711 *
missing_data_df.weight[index[i]] + 25.874947903262651
# replacing "nan" values in dataframe using .set_value
missing_data_df.set_value(index[i],"horsepower",a)
i+=1
`
it is executing. but missing values(nan) in dataframe not replaced by the predicted values by linear regression in variable 'a'. any suggestion why?
below is the dataframe containing missing data `
>>> missing_data_df:
mpg cylinders displacement horsepower weight acceleration \
10 NaN 4.0 133.0 115.0 3090.0 17.5
11 NaN 8.0 350.0 165.0 4142.0 11.5
12 NaN 8.0 351.0 153.0 4034.0 11.0
13 NaN 8.0 383.0 175.0 4166.0 10.5
14 NaN 8.0 360.0 175.0 3850.0 11.0
17 NaN 8.0 302.0 140.0 3353.0 8.0
38 25.0 4.0 98.0 NaN 2046.0 19.0
39 NaN 4.0 97.0 48.0 1978.0 20.0
133 21.0 6.0 200.0 NaN 2875.0 17.0
337 40.9 4.0 85.0 NaN 1835.0 17.3
343 23.6 4.0 140.0 NaN 2905.0 14.3
361 34.5 4.0 100.0 NaN 2320.0 15.8
367 NaN 4.0 121.0 110.0 2800.0 15.4
382 23.0 4.0 151.0 NaN 3035.0 20.5
model_year origin car_name
10 70.0 2.0 citroen ds-21 pallas
11 70.0 1.0 chevrolet chevelle concours (sw)
12 70.0 1.0 ford torino (sw)
13 70.0 1.0 plymouth satellite (sw)
14 70.0 1.0 amc rebel sst (sw)
17 70.0 1.0 ford mustang boss 302
38 71.0 1.0 ford pinto
39 71.0 2.0 volkswagen super beetle 117
133 74.0 1.0 ford maverick
337 80.0 2.0 renault lecar deluxe
343 80.0 1.0 ford mustang cobra
361 81.0 2.0 renault 18i
367 81.0 2.0 saab 900s
382 82.0 1.0 amc concord dl
`
Upvotes: 1
Views: 7011
Reputation: 3346
Several things
To calculate weight try
for idx in missing_data_df.index:
if pd.isnull(missing_data_df.loc[idx,"weight"]):
disp = missing_data_df.loc[idx,"displacement"]
hp = missing_data_df.loc[idx,"horsepower"]
missing_data_df.loc[idx,"weight"] = (0.25743277 * disp + 25.874947903262651 - hp) / -0.00958711
In general, .loc[]
and .iloc[]
are a better way to go when finding or setting values
Upvotes: 0
Reputation: 623
You can use apply and lambda for this:
missing_data_df['horsepower']= missing_data_df.apply(
lambda row:
0.25743277 * row.displacement + 0.00958711 * row.weight + 25.874947903262651
if np.isnan(row.horsepower) else row.horsepower, axis=1)
Upvotes: 1