Reputation: 33
How to get this example to compile without array copying or multiple calls to b()
per iteration — b()
has to perform some expensive parsing?
This is not the full code that I wrote, but it illustrates the problem I had. Here, Test
is attempting to perform some kind of streaming parsing work. c()
is the parsing function, it returns Some
when parsing was successful. b()
is a function that attempts to read more data from the stream when c()
can not parse using the available data yet. The returned value is a slice into the self.v
containing the parsed range.
struct Test {
v: [u8; 10],
index: u8,
}
impl Test {
fn b(&mut self) {
self.index = 1
}
fn c(i: &[u8]) -> Option<&[u8]> {
Some(i)
}
fn a(&mut self) -> &[u8] {
loop {
self.b();
match Test::c(&self.v) {
Some(r) => return r,
_ => continue,
}
}
}
}
fn main() {
let mut q = Test {
v: [0; 10],
index: 0,
};
q.a();
}
When compiling, it produces the following borrow checker error:
error[E0502]: cannot borrow `*self` as mutable because `self.v` is also
borrowed as immutable
--> <anon>:17:13
|
17 | self.b();
| ^^^^ mutable borrow occurs here
18 |
19 | match Test::c(&self.v) {
| ------ immutable borrow occurs here
...
24 | }
| - immutable borrow ends here
If I change a()
to:
fn a(&mut self) -> Option<&[u8]> {
loop {
self.b();
if let None = Test::c(&self.v) {
continue
}
if let Some(r) = Test::c(&self.v) {
return Some(r);
} else {
unreachable!();
}
}
}
Then it runs, but with the obvious drawback of calling the parsing function c()
twice.
I kind of understand that changing self
while the return value depends on it is unsafe, however, I do not understand why is the immutable borrow for self.v
is still alive in the next iteration, when we attempted to call b()
again.
Upvotes: 3
Views: 1451
Reputation: 3861
Right now "Rustc can't "deal" with conditional borrowing returns". See this comment from Gankro on issue 21906.
It can't assign a correct lifetime to the borrow if only one execution path terminates the loop.
I can suggest this workaround, but I'm not sure it is optimal:
fn c(i: &[u8]) -> Option<(usize, usize)> {
Some((0, i.len()))
}
fn a(&mut self) -> &[u8] {
let parse_result;
loop {
self.b();
match Test::c(&self.v) {
Some(r) => {
parse_result = r;
break;
}
_ => {}
}
}
let (start, end) = parse_result;
&self.v[start..end]
}
You can construct result of parsing using array indexes and convert them into references outside of the loop.
Another option is to resort to unsafe
to decouple lifetimes. I am not an expert in safe use of unsafe, so pay attention to comments of others.
fn a(&mut self) -> &[u8] {
loop {
self.b();
match Test::c(&self.v) {
Some(r) => return unsafe{
// should be safe. It decouples lifetime of
// &self.v and lifetime of returned value,
// while lifetime of returned value still
// cannot outlive self
::std::slice::from_raw_parts(r.as_ptr(), r.len())
},
_ => continue,
}
}
}
Upvotes: 5