Reputation: 195
does any one has a simple C++ code example of using MKL sparse matrix vector multiply routine? I need to use "mkl_zcsrsymv" to multiply a complex symmetric matrix (stored in lower triangular) with a complex vector, but I couldn't find a single demonstrative example on this. Unable to compile my code for complex case.
Upvotes: 3
Views: 3713
Reputation: 10939
Read the documentation for mkl_zcsrsymv
on Intel's homepage. Here symmetric is to be taken literally! (It does not mean Hermitian)
Compile with icpc -mkl test.c
for maximal convenience.
#include <stdio.h>
#include "mkl_spblas.h"
int main()
{
/* Matrix in CRS format
*
* { { 0, 0, i }
* { 0, -1, 2 }
* { i, 2, 0 } }
*/
int m = 3;
MKL_Complex16 a[] = { {0,1}, {-1,0}, {2,0}, {0,1}, {2,0} };
int ia[] = { 0, 1, 3, 5 };
int ja[] = { 2, 1, 2, 0, 1 };
MKL_Complex16 x[] = { {1,0}, {2,0}, {3,0} };
MKL_Complex16 y[] = { {0,0}, {0,0}, {0,0} };
char uplo = 'L';
// Use MKL to compute
// y = A*x
mkl_cspblas_zcsrsymv(&uplo, &m, a, ia, ja, x, y);
printf("y = { (%g,%g), (%g,%g), (%g,%g) }\n",
y[0].real, y[0].imag,
y[1].real, y[1].imag,
y[2].real, y[2].imag
);
}
Output is y = { (0,3), (4,0), (4,1) }
. Check it on WolframAlpha.
Here is also an example for mkl_dcsrmv
.
#include <stdio.h>
#include "mkl_spblas.h"
int main()
{
/* Matrix in CRS format
*
* { { 0, 0, 1 }
* { 0, -1, 2 }
* { 1, 0, 0 } }
*/
int m = 3;
int k = 3;
double val[] = { 1, -1, 2, 1 };
int indx[] = { 2, 1, 2, 0 };
int pntrb[] = { 0, 1, 3 };
int pntre[] = { 1, 3, 4 };
double x[] = { 1, 2, 3 };
double y[] = { 0, 0, 0 };
double alpha = 1;
double beta = 0;
char transa = 'N';
char matdescra[] = {
'G', // type of matrix
' ', // triangular indicator (ignored in multiplication)
' ', // diagonal indicator (ignored in multiplication)
'C' // type of indexing
};
// Use MKL to compute
// y = alpha*A*x + beta*y
mkl_dcsrmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre, x, &beta, y);
printf("y = { %g, %g, %g }\n", y[0], y[1], y[2]);
}
Output is y = { 3, 4, 1 }
. Check it on WolframAlpha.
While playing with this I found out that this is directly compatible with Armadillo. This makes it very convenient to use in C++. Here I first generate a random symmetric matrix with Armadillo and convert it to sparse. This I multiply with a random vector. Finally I compare the result to Armadillo's sparse matrix-vector product. The precision differs quite substantially.
#include <iostream>
#include <armadillo>
#define MKL_Complex16 arma::cx_double
#include "mkl_spblas.h"
int main()
{
/* Matrix in CRS format
*
* { { 0, 0, i }
* { 0, -1, 2 }
* { i, 2, 0 } }
*/
int dim = 1000;
arma::sp_cx_mat a(arma::randu<arma::cx_mat>(dim,dim));
a += a.st();
arma::cx_vec x = arma::randu<arma::cx_vec>(dim);
arma::cx_vec y(dim);
char uplo = 'L';
// Use MKL to compute
// y = A*x
mkl_cspblas_zcsrsymv(&uplo, &dim,
a.values, (int*)a.col_ptrs, (int*)a.row_indices,
x.memptr(), y.memptr());
std::cout << std::boolalpha
<< arma::approx_equal(y, a*x, "absdiff", 1e-10)
<< '\n';
}
Upvotes: 3