Reputation: 180
I am working on pandas dataframe (df) having below sample data:
0 Dec-16 N
1 Jan-17 N
2 Feb-17 Y
3 Feb-17 N
4 Jan-17 N
5 Mar-17 Y
6 Mar-17 Y
7 Jan-17 N
8 Jan-17 Y
using
df_group = df.groupby(['MMM-YY', 'Valid'])
I am getting below output:
MMM-YY Valid
Dec-16 N 1
Feb-17 N 1
Y 1
Jan-17 N 3
Y 1
Mar-17 Y 2
I want to create a bar chart (displaying the bars in %age for Y & N) using this data but unfortunately unable to achieve that. I tried to convert the above output to a new dataframe but no luck.
Any pointers for resolving this would be really appreciated.
Upvotes: 1
Views: 2277
Reputation: 862406
I think you need crosstab
with normalize
over each row + DataFrame.plot.bar
:
df_group = df = pd.crosstab(df['MMM-YY'], df['Valid'], normalize=0)
print (df_group)
Valid N Y
MMM-YY
Dec-16 1.00 0.00
Feb-17 0.50 0.50
Jan-17 0.75 0.25
Mar-17 0.00 1.00
df_group.plot.bar()
If need normalize per columns:
df_group1 = df = pd.crosstab(df['MMM-YY'], df['Valid'], normalize=1)
print (df_group1)
Valid N Y
MMM-YY
Dec-16 0.2 0.00
Feb-17 0.2 0.25
Jan-17 0.6 0.25
Mar-17 0.0 0.50
df_group1.plot.bar()
If need count values only:
df1 = df = pd.crosstab(df['MMM-YY'], df['Valid'])
print (df1)
Valid N Y
MMM-YY
Dec-16 1 0
Feb-17 1 1
Jan-17 3 1
Mar-17 0 2
df1.plot.bar()
Upvotes: 2