Reputation: 6314
I have a data.frame
of this format:
set.seed(1)
pl.mat <-matrix(rnorm(500*1000),nrow=500,ncol=1000)
colnames(pl.mat) <- gsub("\\s+","",apply(expand.grid(paste("pl",1:10,sep=""),1:100),1,function(x) paste(unlist(x),collapse=".")),perl=T)
df <- cbind(data.frame(id=1:500,group.id=rep(1:25,20)),pl.mat)
> df[1:5,1:5]
id group.id pl1.1 pl2.1 pl3.1
1 1 1 -0.6264538 0.07730312 1.13496509
2 2 2 0.1836433 -0.29686864 1.11193185
3 3 3 -0.8356286 -1.18324224 -0.87077763
4 4 4 1.5952808 0.01129269 0.21073159
5 5 5 0.3295078 0.99160104 0.06939565
df$id
are grouped by df$group.id
. Then each column has an experimental plate id (pl1
-pl10
), and the integer following the period separator is a well id (1-100). Hence each plate has 100 columns.
I want to build a new data.frame
which these columns:
df$id
, df$group.id
, well id, and the all plates.
Meaning this format:
id group.id well.id pl1 pl2 pl3
1 1 1 -0.6264538 0.07730312 1.13496509
1 1 2 ... ... ...
.
.
.
1 2 1 ... ... ...
.
.
.
500 25 . 100 ... ... ...
Any good concise code for that?
Upvotes: 0
Views: 29
Reputation: 1700
Dan, you could create a new data.frame
with the desired columns. Let's say you want column df$id
and df$group.id
:
newDF <- as.data.frame(cbind(df$id, df$group.id))
Now, if you had such a huge amount of columns where you cannot write-out any, you could use the index as well:
newDF <- as.data.frame(cbind(df[,2], df[,5]))
Therefore, also ranges work:
newDF <- as.data.frame(cbind(df[,2:210], df[,507:1020]))
Does this work for you? Another solution would be to use a loop and construct the indices or column names dynamically. Here a draft:
for(i in 1:10) {
print(eval(parse(text=paste("df$id", i, sep = ""))))
}
Here, the column names df$id1
up to df$id10
gets build dynamically.
Best regards, Thorsten
Upvotes: 1
Reputation: 7153
df %>%
gather(var, val, -id, -group.id) %>%
separate(var, c("pl.id", "well.id")) %>%
spread(pl.id, val)
Upvotes: 1