Reputation: 2168
X = [ 1994. 1995. 1996. 1997. 1998. 1999.]
y = [1.2 2.3 3.4 4.5 5.6 6.7]
clf = LinearRegression()
clf.fit(X,y)
This gives the above mentioned error. Both X and y are numpy arrays
How do I remove this error?
I tried the method given here and reshaped X and y by using X.reshape((-1,1))
and y.reshape((-1,1))
. However it did not work out.
Upvotes: 4
Views: 38900
Reputation: 11
I had a similar problem when train test spilt where I had an imbalance variable sample. For my case, I solved it by passing the stratify parameter.
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, stratify=y, random_state=42)
Upvotes: 0
Reputation: 1
import pandas as pd
import numpy as np
from sklearn import linear_model
from sklearn.cross_validation import train_test_split
df_house = pd.read_csv('CSVFiles/kc_house_data.csv',index_col = 0,engine ='c')
df_house.drop(df_house.columns[[1, 0, 10, 11,12, 13, 14, 15, 16, 17,18]], axis=1, inplace=True)
reg=linear_model.LinearRegression()
df_y=df_house[df_house.columns[1:2]]
df_house.drop(df_house.columns[[6, 7, 8, 5]], axis=1, inplace=True)
x_train, x_test, y_train, y_test=train_test_split(df_house, df_y, test_size=0.1, random_state=7)
print(x_train.shape, y_train.shape)
reg.fit(x_train, x_test)
LinearRegression(copy_x=True, fit_intercept=True, n_jobs=1, normalize=False )
My Shape is :
(19451, 5) (19451, 1)
ValueError: Found input variables with inconsistent numbers of samples: [19451, 2162]
Upvotes: -1
Reputation: 36599
This is working for me fine. Before reshaping make sure that the arrays are numpy arrays.
import numpy as np
from sklearn.linear_model import LinearRegression
X = np.asarray([ 1994., 1995., 1996., 1997., 1998., 1999.])
y = np.asarray([1.2, 2.3, 3.4, 4.5, 5.6, 6.7])
clf = LinearRegression()
clf.fit(X.reshape(-1,1),y)
clf.predict([1997])
#Output: array([ 4.5])
clf.predict([2001])
#Output: array([ 8.9])
Upvotes: 4