Reputation: 125
I was trying to modify the data type of column in Python in Pycharm using Numpy and Pandas library but I am getting the following error.
dataset.fillna(1e6).astype(int)
D:\Softwares\Python3.6.1\python.exe D:/PythonPractice/DataPreprocessing/DataPreprocessing_1.py
Traceback (most recent call last):
Country Age Salary Purchased
File "D:/PythonPractice/DataPreprocessing/DataPreprocessing_1.py", line 6, in <module>
dataset.fillna(1e6).astype(int)
0 France 44.0 72000.0 No
1 Spain 27.0 48000.0 Yes
File "D:\Softwares\Python3.6.1\lib\site-packages\pandas\util\_decorators.py", line 91, in wrapper
2 Germany 30.0 54000.0 No
3 Spain 38.0 61000.0 No
return func(*args, **kwargs)
4 Germany 40.0 NaN Yes
File "D:\Softwares\Python3.6.1\lib\site-packages\pandas\core\generic.py", line 3299, in astype
**kwargs)
File "D:\Softwares\Python3.6.1\lib\site-packages\pandas\core\internals.py", line 3224, in astype
5 France 35.0 58000.0 Yes
return self.apply('astype', dtype=dtype, **kwargs)
6 Spain NaN 52000.0 No
File "D:\Softwares\Python3.6.1\lib\site-packages\pandas\core\internals.py", line 3091, in apply
7 France 48.0 79000.0 Yes
applied = getattr(b, f)(**kwargs)
8 Germany 50.0 83000.0 No
File "D:\Softwares\Python3.6.1\lib\site-packages\pandas\core\internals.py", line 471, in astype
9 France 37.0 67000.0 Yes
**kwargs)
File "D:\Softwares\Python3.6.1\lib\site-packages\pandas\core\internals.py", line 521, in _astype
values = astype_nansafe(values.ravel(), dtype, copy=True)
File "D:\Softwares\Python3.6.1\lib\site-packages\pandas\core\dtypes\cast.py", line 625, in astype_nansafe
return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape)
File "pandas\_libs\lib.pyx", line 917, in pandas._libs.lib.astype_intsafe (pandas\_libs\lib.c:16260)
File "pandas\_libs\src\util.pxd", line 93, in util.set_value_at_unsafe (pandas\_libs\lib.c:73093)
ValueError: invalid literal for int() with base 10: 'France'
Upvotes: 0
Views: 2996
Reputation: 11
You can't transform 'France' to integer, you should:
dataset['Country'] = dataset['Country'].map({'France': 0, 'Spain': 1, 'Germany': 2})]
then:
dataset['Country'].astype(int)
if there is still an error like this:
ValueError: Cannot convert non-finite values (NA or inf) to integer
This is due to that there is some NaN
in the dataset['Country']
.
Deal with these NaN
by fillna()
or drop()
and so on, you will resolve it.
Upvotes: 0
Reputation: 101
Your error message - ValueError: invalid literal for int() with base 10: 'France'
- suggests you're using the Country
column, the contents of which are strings and can't be changed to integers. Try adjusting your range over.
Upvotes: 1