Reputation: 539
Would the code below represent one or two layers? I'm confused because isn't there also supposed to be an input layer in a neural net?
input_layer = slim.fully_connected(input, 6000, activation_fn=tf.nn.relu)
output = slim.fully_connected(input_layer, num_output)
Does that contain a hidden layer? I'm just trying to be able to visualize the net. Thanks in advance!
Upvotes: 2
Views: 480
Reputation: 6769
From tensorflow-slim:
Furthermore, TF-Slim's slim.stack operator allows a caller to repeatedly apply the same operation with different arguments to create a stack or tower of layers. slim.stack also creates a new tf.variable_scope for each operation created. For example, a simple way to create a Multi-Layer Perceptron (MLP):
# Verbose way:
x = slim.fully_connected(x, 32, scope='fc/fc_1')
x = slim.fully_connected(x, 64, scope='fc/fc_2')
x = slim.fully_connected(x, 128, scope='fc/fc_3')
# Equivalent, TF-Slim way using slim.stack:
slim.stack(x, slim.fully_connected, [32, 64, 128], scope='fc')
So the network mentioned here is a [32, 64,128]
network - a layer with a hidden size of 64.
Upvotes: 0
Reputation: 1841
You have a neural network with one hidden layer. In your code, input
corresponds to the 'Input' layer in the above image. input_layer
is what the image calls 'Hidden'. output
is what the image calls 'Output'.
Remember that the "input layer" of a neural network isn't a traditional fully-connected layer since it's just raw data without an activation. It's a bit of a misnomer. Those neurons in the picture above in the input layer are not the same as the neurons in the hidden layer or output layer.
Upvotes: 1