Reputation: 11660
I have a df:
pd.DataFrame({'time_period': {0: pd.Timestamp('2017-04-01 00:00:00'),
1: pd.Timestamp('2017-04-01 00:00:00'),
2: pd.Timestamp('2017-03-01 00:00:00'),
3: pd.Timestamp('2017-03-01 00:00:00')},
'cost1': {0: 142.62999999999994,
1: 131.97000000000003,
2: 142.62999999999994,
3: 131.97000000000003},
'revenue1': {0: 56,
1: 113.14999999999998,
2: 177,
3: 99},
'cost2': {0: 309.85000000000002,
1: 258.25,
2: 309.85000000000002,
3: 258.25},
'revenue2': {0: 4.5,
1: 299.63,2: 309.85,
3: 258.25},
'City': {0: 'Boston',
1: 'New York',2: 'Boston',
3: 'New York'}})
I want to re-structure this df such that for revenue and cost separately:
pd.DataFrame({'City': {0: 'Boston', 1: 'New York'},
'Apr-17 revenue1': {0: 56.0, 1: 113.15000000000001},
'Apr-17 revenue2': {0: 4.5, 1: 299.63},
'Mar-17 revenue1': {0: 177, 1: 99},
'Mar-17 revenue2': {0: 309.85000000000002, 1: 258.25}})
And a similar df for costs.
Basically, turn the time_period
column values into column names like Apr-17, Mar-17 with revenue/cost string as appropriate and values of revenue1/revenue2 and cost1/cost2 respectively.
I've been playing around with pd.pivot_table
with some success but I can't get exactly what I want.
Upvotes: 1
Views: 78
Reputation: 38415
Use set_index and unstack
import datetime as dt
df['time_period'] = df['time_period'].apply(lambda x: dt.datetime.strftime(x,'%b-%Y'))
df = df.set_index(['A', 'B', 'time_period'])[['revenue1', 'revenue2']].unstack().reset_index()
df.columns = df.columns.map(' '.join)
A B revenue1 Apr-2017 revenue1 Mar-2017 revenue2 Apr-2017 revenue2 Mar-2017
0 Boston Orlando 56.00 177.0 4.50 309.85
1 New York Dallas 113.15 99.0 299.63 258.25
Upvotes: 2