Reputation: 49
In the following code when I print conv_out.get_shape()
it gives me output (1,14,14,1)
. I want to multiply the second third and fourth dimension (14*14*1)
. How I can do that?
input = tf.Variable(tf.random_normal([1,28,28,1]))
filter = tf.Variable(tf.random_normal([5,5,1,1]))
def conv2d(input,filter):
return tf.nn.conv2d(input,filter,strides=[1,2,2,1],padding='SAME')
conv_out = conv2d(input,filter)
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
print conv_out.get_shape()
print conv_out.get_shape().as_list()[2]
Upvotes: 5
Views: 814
Reputation: 1114
something like
import numpy as np
np.asarray(conv_out.get_shape().as_list()[1:]).prod()
should do the work.
Or, if you want it internally to the tensorflow graph, something like:
tf_shape = tf.shape(conv_out)
tf_shape_prod = tf.reduce_prod(tf_shape[1:])
Upvotes: 4