Reputation: 4442
I have dataframe
ID domain category active_seconds
111 vk.com Social_network 42
111 facebook.com Social_network 18
222 vk.com Social_network 50
222 gmail.com E-mail 50
If I use
df.groupby(['category', 'domain']).agg({'ID': pd.Series.nunique, 'active_seconds': np.sum}).rename(columns={'ID': 'all_users', 'active_seconds': 'all_time'}.reset_index()
I get with it
category domain all_users all_time
Social_network vk.com 2 92
Social_network facebook.com 1 18
E-mail gmail.com 1 50
But is any way to get report in this format:
category domain all_users all_time
Social_network 2 110
vk.com 2 92
facebook.com 1 18
E-mail 1 50
gmail.com 1 50
Upvotes: 2
Views: 378
Reputation: 862641
You can create new DataFrame
by agg
sum
and nunique
and add new level of MultiIndex.from_arrays
, last concat
with sort_index
:
#omit reset_index
df1 = df.groupby(['category', 'domain'])
.agg({'ID': pd.Series.nunique, 'active_seconds': np.sum})
.rename(columns={'ID': 'all_users', 'active_seconds': 'all_time'})
df2 = df1.groupby('category').agg({'all_users': 'nunique', 'all_time': 'sum'})
df2.index = pd.MultiIndex.from_arrays([df2.index, [''] * len(df2.index)],
names=('category','domain'))
print (df2)
all_time all_users
category domain
E-mail 50 1
Social_network 110 2
print (pd.concat([df1,df2]).sort_index())
all_time all_users
category domain
E-mail 50 1
gmail.com 50 1
Social_network 110 2
facebook.com 18 1
vk.com 92 2
Another solution for new DataFrame
is create new column by assign
and set_index
:
df2 = df1.groupby('category').agg({'all_users': 'nunique', 'all_time': 'sum'})
.assign(domain='')
.set_index('domain', append=True)
print (df2)
all_time all_users
category domain
E-mail 50 1
Social_network 110 2
Upvotes: 1