Reputation: 435
I have a DataFrame such as:
tag1 other
0 a,c foo
1 b,c foo
2 d foo
3 a,a foo
Of which the entries are strings delimited by commas.
And a dict of definitions for each tag such as:
dict = {'a' : 'Apple',
'b' : 'Banana',
'c' : 'Carrot'}
I would like to replace the definitions of a
, b
, and c
but delete rows in which there is something not within that dict (i.e. d
). Furthermore, I'd like to ensure there are no duplicates, such as row index 3 in the example dataset.
What I have so far:
df.tags = df.tags.str.split(',')
for index, row in df.iterrows():
names = []
for tag in row.tag1:
if tag == dict[tag]:
names.append(dict[tag])
else:
df.drop(df.index[index])
From there I would replace the original column with the values in names
. To replace duplicates, I am thinking of iterating over the array and checking if the next value matches the next, and if so, deleting it. However, this is not working and I am a bit stumped. The desired output would look like (with strings in unicode):
tag1 other
0 ['Apple', 'Carrot'] foo
1 ['Banadn', 'Carrot'] foo
3 ['Apple'] foo
Upvotes: 1
Views: 1216
Reputation: 294278
For my entry into the longest one liner competition
m = {
'a' : 'Apple',
'b' : 'Banana',
'c' : 'Carrot'
}
df.tag1.str.split(',', expand=True) \
.stack().map(m).groupby(level=0) \
.filter(lambda x: x.notnull().all()) \
.groupby(level=0).apply(lambda x: x.drop_duplicates().str.cat(sep=',')) \
.to_frame('tag1').join(df.other)
tag1 other
0 Apple,Carrot foo
1 Banana,Carrot foo
3 Apple foo
But seriously, probably a better solution
a = np.core.defchararray.split(df.tag1.values.astype(str), ',')
lens = [len(s) for s in a]
b = np.concatenate(a)
c = [m.get(k, np.nan) for k in b]
i = df.index.values.repeat(lens)
s = pd.Series(c, i)
def proc(x):
if x.notnull().all():
return x.drop_duplicates().str.cat(sep=',')
s.groupby(level=0).apply(proc).dropna().to_frame('tag1').join(df.other)
tag1 other
0 Apple,Carrot foo
1 Banana,Carrot foo
3 Apple foo
Upvotes: 4