Rajeev Kumar Sahu
Rajeev Kumar Sahu

Reputation: 51

Splitting list inside a Pandas Column into Separate Columns

This is my "Feature" column in the pandas dataframe

Feature
Cricket:82379, Kabaddi:255, Reality:4751
Cricket:15640, Wildlife:730
LiveTV:13, Football:4129
TalkShow:658, Cricket:7690
Drama:5503, Cricket:3283, Reality:1345

and I want to make a column of Cricket and put the value 82379.

Similar to case mentioned in the below link Splitting dictionary/list inside a Pandas Column into Separate Columns

Upvotes: 2

Views: 785

Answers (1)

Tiny.D
Tiny.D

Reputation: 6556

Suppose you have:

import pandas as pd
df = pd.DataFrame.from_dict({'Freature':[{"Cricket":82379, "Kabaddi":255, "Reality":4751},{"Cricket":15640, "Wildlife":730},{"LiveTV":13, "Football":4129},{"TalkShow":658, "Cricket":7690},{"Drama":5503, "Cricket":3283, "Reality":1345}]})
df

    Freature
0   {u'Cricket': 82379, u'Kabaddi': 255, u'Reality...
1   {u'Cricket': 15640, u'Wildlife': 730}
2   {u'LiveTV': 13, u'Football': 4129}
3   {u'TalkShow': 658, u'Cricket': 7690}
4   {u'Drama': 5503, u'Cricket': 3283, u'Reality':...

then try with:

df['Freature'].apply(pd.Series)

Output will be:

    Cricket Drama   Football    Kabaddi LiveTV  Reality TalkShow    Wildlife
0   82379.0 NaN     NaN         255.0   NaN     4751.0  NaN         NaN
1   15640.0 NaN     NaN         NaN     NaN     NaN     NaN         730.0
2   NaN     NaN     4129.0      NaN     13.0    NaN     NaN         NaN
3   7690.0  NaN     NaN         NaN     NaN     NaN     658.0       NaN
4   3283.0  5503.0  NaN         NaN     NaN     1345.0  NaN         NaN

Update:

Convert to dict:

new_df = df['Freature'].apply(pd.Series)
result = dict((column, list(new_df[column].dropna())) for column in new_df.columns)
result

Output of result will be a dict:

{'Cricket': [82379.0, 15640.0, 7690.0, 3283.0],
 'Drama': [5503.0],
 'Football': [4129.0],
 'Kabaddi': [255.0],
 'LiveTV': [13.0],
 'Reality': [4751.0, 1345.0],
 'TalkShow': [658.0],
 'Wildlife': [730.0]}

If the Freature content is string:

import pandas as pd
df = pd.DataFrame.from_dict({'Freature':["Cricket:82379, Kabaddi:255, Reality:4751","Cricket:15640, Wildlife:730","LiveTV:13, Football:4129","TalkShow:658, Cricket:7690","Drama:5503, Cricket:3283, Reality:1345"]})
df

    Freature
0   Cricket:82379, Kabaddi:255, Reality:4751
1   Cricket:15640, Wildlife:730
2   LiveTV:13, Football:4129
3   TalkShow:658, Cricket:7690
4   Drama:5503, Cricket:3283, Reality:1345

Then you can convert them to dict like this:

for i in range(len(df)):
    print(dict((e.strip().split(":")[0],int(e.strip().split(":")[1])) for e in df.iloc[i].Freature.split(",")))

It will print all converted dict:

{'Cricket': 82379, 'Kabaddi': 255, 'Reality': 4751}
{'Cricket': 15640, 'Wildlife': 730}
{'LiveTV': 13, 'Football': 4129}
{'TalkShow': 658, 'Cricket': 7690}
{'Drama': 5503, 'Cricket': 3283, 'Reality': 1345}

Upvotes: 3

Related Questions