Reputation: 3389
Given question (the contest is now over)
n
lowercase English letters.bawahaha
y
(because it's both a
consonant and vowel). n
, of the password,print all of the possible passwords that meet the conditions above.
The line of input contains the integer (the length of the password).
Print each of the possible passwords, one per line. The order of the passwords does not matter.
My Code in Python:
import sys
import itertools
n = int(raw_input().strip())
consonants = ['b', 'c', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 't', 'v', 'w', 'x', 'z']
vowels = ['a', 'e', 'i', 'o', 'u']
test4 = ['b', 'c', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 't', 'v', 'w', 'x', 'z', 'a', 'e', 'i', 'o', 'u']
answer = set(itertools.product(test4, repeat=n))
for letters in answer:
for j in xrange(len(letters)):
flag = 1
if j != len(letters) - 1:
if letters[j] in vowels and letters[j+1] in vowels:
flag = 0
break
if letters[j] in consonants and letters[j+1] in consonants:
flag = 0
break
if flag:
for j in letters:
sys.stdout.write(j)
print ""
Upvotes: 3
Views: 122
Reputation: 152637
Of course there's a better way (if you mean faster). You can generate a itertools.product
where you don't have to "discard" items.
You can simply create a product
of vowel, consonant, vowel, consonant, ...
(alternating both lists n
times) and one which starts with consonant, vowel, consonant, vowel, ...
. The returned items will always satisfy the condition so all that needs to be done is print
ing them.
import itertools
def alternating(seq1, seq2, length):
"""Generator that alternatingly yields seq1 and seq2, `length` times"""
assert length >= 0
for _ in range(length // 2):
yield seq1
yield seq2
if length % 2 == 1:
yield seq1
consonants = ['b', 'c', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 't', 'v', 'w', 'x', 'z']
vowels = ['a', 'e', 'i', 'o', 'u']
n = int(raw_input().strip())
# Starts with vowel
for comb in itertools.product(*list(alternating(vowels, consonants, n))):
print(''.join(comb))
# Starts with consonant
for comb in itertools.product(*list(alternating(consonants, vowels, n))):
print(''.join(comb))
That way you can reduce the number of possible candidates.
Your approach gave 25**n
items, while the new approach only generates 2 * 5**(n//2)*20**(n//2)
(if n
even) or 5**(n//2 + 1) * 20 ** (n//2) + 5**(n//2) * 20 ** (n//2 + 1)
(if n
odd) items.
For n=5
that means: What generated originally 9765625
items (almost 10 million!) from product
will now only generate 250000
items. Even ignoring the (possibly very expensive) check if your sequence satisfies the problem-condition (which is obsolete now) you generated 40 times more items in your product
!
Upvotes: 1