Reputation: 639
My data is numpy ndarray with shape(2,3,4) following this: I've try to normalize 0-1 scale for each column through sklearn normalization.
from sklearn.preprocessing import normalize
x = np.array([[[1, 2, 3, 4],
[2, 2, 3, 4],
[3, 2, 3, 4]],
[[4, 2, 3, 4],
[5, 2, 3, 4],
[6, 2, 3, 4]]])
x.shape ==> ( 2,3,4)
x = normalize(x, norm='max', axis=0, )
However, I catch the error :
ValueError: Found array with dim 3. the normalize function expected <= 2.
How do I solve this problem?
Thank you.
Upvotes: 2
Views: 3858
Reputation: 221504
It seems scikit-learn
expects ndarrays with at most two dims. So, to solve it would be to reshape to 2D
, feed it to normalize
that gives us a 2D
array, which could be reshaped back to original shape -
from sklearn.preprocessing import normalize
normalize(x.reshape(x.shape[0],-1), norm='max', axis=0).reshape(x.shape)
Alternatively, it's much simpler with NumPy that works fine with generic ndarrays -
x/np.linalg.norm(x, ord=np.inf, axis=0, keepdims=True)
Upvotes: 4