Reputation: 31
I want to draw a heatmap.
I have 100k*100k square matrix (50Gb(csv), numbers on right-top side and other filled by 0).
I want to ask "How can I draw a heatmap with R?" with this huge dataset.
I'm trying to this code on large RAM machine.
d = read.table("data.csv", sep=",")
d = as.matrix(d + t(d))
heatmap(d)
I tried some libraries like heatmap.2(in gplots) or something.
But they are take so much time and memories.
Upvotes: 3
Views: 3147
Reputation: 57220
What I suggest you is to heavily down-sample your matrix before plotting the heatmap, e.g. doing the mean of each submatrices (as suggested by @IaroslavDomin) :
# example of big mx 10k x 10 k
bigMx <- matrix(rnorm(10000*10000,mean=0,sd=100),10000,10000)
# here we downsample the big matrix 10k x 10k to 100x100
# by averaging each submatrix
downSampledMx <- matrix(NA,100,100)
subMxSide <- nrow(bigMx)/nrow(downSampledMx)
for(i in 1:nrow(downSampledMx)){
rowIdxs <- ((subMxSide*(i-1)):(subMxSide*i-1))+1
for(j in 1:ncol(downSampledMx)){
colIdxs <- ((subMxSide*(j-1)):(subMxSide*j-1))+1
downSampledMx[i,j] <- mean(bigMx[rowIdxs,colIdxs])
}
}
# NA to disable the dendrograms
heatmap(downSampledMx,Rowv=NA,Colv=NA)
For sure with your huge matrix it will take a while to compute the downSampledMx, but it should be feasible.
EDIT :
I think downsampling should preserve recognizable "macro-patterns", e.g. see the following example :
# create a matrix with some recognizable pattern
set.seed(123)
bigMx <- matrix(rnorm(50*50,mean=0,sd=100),50,50)
diag(bigMx) <- max(bigMx) # set maximum value on the diagonal
# set maximum value on a circle centered on the middle
for(i in 1:nrow(bigMx)){
for(j in 1:ncol(bigMx)){
if(abs((i - 25)^2 + (j - 25)^2 - 10^2) <= 16)
bigMx[i,j] <- max(bigMx)
}
}
# plot the original heatmap
heatmap(bigMx,Rowv=NA,Colv=NA, main="original")
# function used to down sample
downSample <- function(m,newSize){
downSampledMx <- matrix(NA,newSize,newSize)
subMxSide <- nrow(m)/nrow(downSampledMx)
for(i in 1:nrow(downSampledMx)){
rowIdxs <- ((subMxSide*(i-1)):(subMxSide*i-1))+1
for(j in 1:ncol(downSampledMx)){
colIdxs <- ((subMxSide*(j-1)):(subMxSide*j-1))+1
downSampledMx[i,j] <- mean(m[rowIdxs,colIdxs])
}
}
return(downSampledMx)
}
# downsample x 2 and plot heatmap
downSampledMx <- downSample(bigMx,25)
heatmap(downSampledMx,Rowv=NA,Colv=NA, main="downsample x 2")
# downsample x 5 and plot heatmap
downSampledMx <- downSample(bigMx,10)
heatmap(downSampledMx,Rowv=NA,Colv=NA, main="downsample x 5")
Here's the 3 heatmaps :
Upvotes: 9