Reputation: 136
the following question is not about how to config fraction of gpu memory used.
CPU:
FixedLengthRecordReaderV2 allocation_description { requested_bytes: 64 allocated_bytes: 64 allocator_name: "cpu" allocation_id: 107996
GPU:
Reshape/shape" tensor { dtype: DT_INT32 shape { dim { size: 1 } } allocation_description { requested_bytes: 4 allocated_bytes: 256 allocator_name: "cuda_host_bfc" allocation_id: 329 ptr: 1112161657600 } } }
"Unknown" tensor { dtype: DT_UINT8 shape { dim { size: 3073 } } allocation_description { requested_bytes: 3073 allocated_bytes: 3328 allocator_name: "gpu_bfc" allocation_id: 152161 has_single_reference: true ptr: 1108327235584 } } }
Reshape/shape" tensor { dtype: DT_INT32 shape { dim { size: 1 } } allocation_description { requested_bytes: 4 allocated_bytes: 256 allocator_name: "cuda_host_bfc" allocation_id: 329 ptr: 1112161657600 } } }
DecodeRaw" tensor { dtype: DT_UINT8 shape { dim { size: 3073 } } allocation_description { requested_bytes: 3073 allocated_bytes: 4864 allocator_name: "cuda_host_bfc" allocation_id: 35574 has_single_reference: true ptr: 1112190177280 } } }
transpose/perm" tensor { dtype: DT_INT32 shape { dim { size: 3 } } allocation_description { requested_bytes: 12 allocated_bytes: 256 allocator_name: "cuda_host_bfc" allocation_id: 331 ptr: 1112161658112 } } }
stack" tensor { dtype: DT_INT32 shape { dim { size: 3 } } allocation_description { requested_bytes: 12 allocated_bytes: 256 allocator_name: "cuda_host_bfc" allocation_id: 332 ptr: 1112161658368 } } }
stack" tensor { dtype: DT_INT32 shape { dim { size: 3 } } allocation_description { requested_bytes: 12 allocated_bytes: 256 allocator_name: "cuda_host_bfc" allocation_id: 332 ptr: 1112161658368 } } }
stack" tensor { dtype: DT_INT32 shape { dim { size: 3 } } allocation_description { requested_bytes: 12 allocated_bytes: 256 allocator_name: "cuda_host_bfc" allocation_id: 332 ptr: 1112161658368 } } }
1.Why does tensorflow allocate more memory than requested in gpu?
2.Is there any function to determine how much the memory allocated?
For the first question, I guest the purpose is that it can reduce the frequence of allocation. But I cannot understand why this mechanism is adopted by gpu while cpu memory allocator does not.
I am more interested in the second question.
Does anyone know the answer? Any information will be helpful.
Upvotes: 0
Views: 270