Reputation: 2134
I am practising with the mnist data and I am having trouble feeding the placeholder because of this error:
ValueError: Cannot feed value of shape (20,) for Tensor 'Placeholder_1:0', which has shape '(?, 10)'
My code until now is:
import gzip
#https://stackoverflow.com/questions/37132899/installing-cpickle-with-python-3-5
import _pickle as cPickle
import tensorflow as tf
import numpy as np
# Translate a list of labels into an array of 0's and one 1.
# i.e.: 4 -> [0,0,0,0,1,0,0,0,0,0]
def one_hot(x, n):
"""
:param x: label (int)
:param n: number of bits
:return: one hot code
"""
if type(x) == list:
x = np.array(x)
x = x.flatten()
o_h = np.zeros((len(x), n))
o_h[np.arange(len(x)), x] = 1
return o_h
f = gzip.open('mnist.pkl.gz', 'rb')
#https://stackoverflow.com/questions/40493856/python-pickle-unicodedecodeerror
train_set, valid_set, test_set = cPickle.load(f, encoding='latin1')
f.close()
train_x, train_y = train_set
# ---------------- Visualizing some element of the MNIST dataset --------------
import matplotlib.cm as cm
import matplotlib.pyplot as plt
plt.imshow(train_x[57].reshape((28, 28)), cmap=cm.Greys_r)
plt.show() # Let's see a sample
print (train_y[57])
# TODO: the neural net!!
# OJO hace falta formatear los datos.
#x_data = train_set[:, 0:784].astype('f4')
#y_data = one_hot(train_set[:, 785].astype(int), 10)
#Conocemos que las imagenes son de 28x28 entonces las columnas son 784, las filas se dejan para el momento del relleno
x = tf.placeholder("float", [None, 784])
#Necesitamos albergar las etiquetas reales del 0-9 para luego comparar y hallar el error.
y_ = tf.placeholder("float", [None, 10])
#Recibimos las 784 entradas y las sumamos a trav�s de 10 neuronas
W1 = tf.Variable(np.float32(np.random.rand(784, 10)) * 0.1)
#El umbral es 10 porque queremos que todas las neuronas participen �? AND �?
b1 = tf.Variable(np.float32(np.random.rand(10)) * 0.1)
#La funcion que clasifica la aplicamos a las entradas x con los pesos W1 adicionando el b1
y = tf.nn.softmax(tf.matmul(x, W1) + b1)
#Nuestro error es la diferencia entre las etiquetas reales de los n y las predichas por la red, al cuadrado; haciendo la media.
loss = tf.reduce_sum(tf.square(y_ - y))
#Minimizamos el error con un factor de aprendizaje de 0.01
train = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
print ("----------------------")
print (" Start training... ")
print ("----------------------")
batch_size = 20
for epoch in range(100):
#https://stackoverflow.com/questions/19824721/i-keep-getting-this-error-for-my-simple-python-program-typeerror-float-obje
for jj in range(len(train_x) // batch_size):
batch_xs = train_x[jj * batch_size: jj * batch_size + batch_size]
batch_ys = train_y[jj * batch_size: jj * batch_size + batch_size]
tf.reshape(batch_ys, [2, 10])
sess.run(train, feed_dict={x: batch_xs, y_: batch_ys})
print ("Epoch #:", epoch, "Error: ", sess.run(loss, feed_dict={x: batch_xs, y_: batch_ys}))
result = sess.run(y, feed_dict={x: batch_xs})
for b, r in zip(batch_ys, result):
print (b, "-->", r)
print ("----------------------------------------------------------------------------------")
###�Como usamos el conjunto de validacion????
I would really appreciate any help. Also I have read this topic:
and
Tensorflow error using my own data
but I need help.
Upvotes: 0
Views: 380
Reputation: 19634
You did not apply one_hot
on the elements of train_y
(as indicated be the row #y_data = one_hot(train_set[:, 785].astype(int), 10)
, which is just a comment, and the only place in your code where you used one_hot
).
Hence batch_ys
is an array of numbers, and you need to transform it into an array of one_hot
's if you want to feed it into feed_dict
, because y_
is a placeholder that corresponds to the one_hot
's:
y_ = tf.placeholder("float", [None, 10])
Also, remove the row tf.reshape(batch_ys, [2, 10])
, as you don't need to reshape batch_ys
. Instead, you need to transform it using one_hot
as discussed above.
Upvotes: 2