Reputation: 89
I observed some strange pandas behavior with MultiIndex dataFrames.columns
Construction a MultiIndex dataframe:
a=[0,.25, .5, .75]
b=[1, 2, 3, 4]
c=[5, 6, 7, 8]
d=[1, 2, 3, 5]
df=pd.DataFrame(data={('a','a'):a, ('b', 'b'):b, ('c', 'c'):c, ('d', 'd'):d})
produces this dataFrame
a b c d
a b c d
0 0.00 1 5 1
1 0.25 2 6 2
2 0.50 3 7 3
3 0.75 4 8 5
Creating a new variable with a subset of the original dataFrame
df1=df.copy().loc[:,[('a', 'a'), ('b', 'b')]]
produces like expected:
a b
a b
0 0.00 1
1 0.25 2
2 0.50 3
but accessing the column names of this new dataFrame produces some unexpected output:
print df1.columns
MultiIndex(levels=[[u'a', u'b', u'c', u'd'], [u'a', u'b', u'c', u'd']],
labels=[[0, 1], [0, 1]])
so ('b', 'b') and ('c', 'c') is still contained.
In contrast
print df1.columns.tolist()
returns like expected:
[('a', 'a'), ('b', 'b')]
can anybody explain me the reason for this behavior??
Upvotes: 1
Views: 513
Reputation: 862921
I think you need MultiIndex.remove_unused_levels
what is new function in 0.20.0
version.
Docs.
print (df1.columns)
MultiIndex(levels=[['a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd']],
labels=[[0, 1], [0, 1]])
print (df1.columns.remove_unused_levels())
MultiIndex(levels=[['a', 'b'], ['a', 'b']],
labels=[[0, 1], [0, 1]])
Upvotes: 3