Reputation: 924
A column in my pandas data frame represents a time delta that I calculated with datetime then exported into a csv and read back into a pandas data frame. Now the column's dtype is object whereas I want it to be a timedelta so I can perform a groupby function on the dataframe. Below is what the strings look like. Thanks!
0 days 00:00:57.416000
0 days 00:00:12.036000
0 days 16:46:23.127000
49 days 00:09:30.813000
50 days 00:39:31.306000
55 days 12:39:32.269000
-1 days +22:03:05.256000
Update, my best attempt at writing a for-loop to iterate over a specific column in my pandas dataframe:
def delta(i):
days, timestamp = i.split(" days ")
timestamp = timestamp[:len(timestamp)-7]
t = datetime.datetime.strptime(timestamp,"%H:%M:%S") +
datetime.timedelta(days=int(days))
delta = datetime.timedelta(days=t.day, hours=t.hour,
minutes=t.minute, seconds=t.second)
delta.total_seconds()
data['diff'].map(delta)
Upvotes: 6
Views: 6506
Reputation: 294218
Use pd.to_timedelta
pd.to_timedelta(df.iloc[:, 0])
0 0 days 00:00:57.416000
1 0 days 00:00:12.036000
2 0 days 16:46:23.127000
3 49 days 00:09:30.813000
4 50 days 00:39:31.306000
5 55 days 12:39:32.269000
6 -1 days +22:03:05.256000
Name: 0, dtype: timedelta64[ns]
Upvotes: 5
Reputation: 25094
import datetime
#Parse your string
days, timestamp = "55 days 12:39:32.269000".split(" days ")
timestamp = timestamp[:len(timestamp)-7]
#Generate datetime object
t = datetime.datetime.strptime(timestamp,"%H:%M:%S") + datetime.timedelta(days=int(days))
#Generate a timedelta
delta = datetime.timedelta(days=t.day, hours=t.hour, minutes=t.minute, seconds=t.second)
#Represent in Seconds
delta.total_seconds()
Upvotes: 3
Reputation: 34
You could do something like this, looping through each value from the CSV in place of stringdate:
stringdate = "2 days 00:00:57.416000"
days_v_hms = string1.split('days')
hms = days_v_hms[1].split(':')
dt = datetime.timedelta(days=int(days_v_hms[0]), hours=int(hms[0]), minutes=int(hms[1]), seconds=float(hms[2]))
Cheers!
Upvotes: 1