Zeta11
Zeta11

Reputation: 881

Splitting a csv file into panda dataframe by multiple columns

I have a tsv file with multiple columns. There are 10 and more columns but the columns important to me are the ones with the name user_name, shift_id, url_id. I want to create a data frame that first separates the entire csv file based on user_names i.e only rows with same user_name are grouped together. From that chunk I make another chunk where only rows with certain shift_id are grouped together and then from that chunk make a chunk with same url. I unfortunately cannot share the data because of the company rule and making an imaginary data table might be more confusing.

Two of the other columns have time-stamps. I want to calculate the time duration of the chunk but only after I group chunk according to those columns.

I have seen answers that split data-frame by a specific column value,but in my case I have three column values and the order in which they are separated matters too.

Thank you for your help!

Upvotes: 3

Views: 1485

Answers (1)

niraj
niraj

Reputation: 18208

Assuming you read the columns to dataframe

df = pd.DataFrame({'col1':[1,2,3], 'col2':[4,5,6],'col3':[7,8,9],
               'col4':[1,2,3],'col5':[1,2,3],'col6':[1,2,3],
               'col7':[1,2,3],'col8':[1,2,3],'col9':[1,2,3],
               'col91':[1,2,3]})
print(df)

Output:

     col1  col2  col3  col4  col5  col6  col7  col8  col9  col91
0     1     4     7     1     1     1     1     1     1      1
1     2     5     8     2     2     2     2     2     2      2
2     3     6     9     3     3     3     3     3     3      3

Now, we can select only three columns of interest, let it be col1, col2, and col3

tmp_df = df[['col1', 'col2', 'col3']]
print(tmp_df)

Output:

     col1  col2  col3
0     1     4     7
1     2     5     8
2     3     6     9

Further we want to filter based on three column values:

final_df = tmp_df[(tmp_df.col1 == 1) & (tmp_df.col2 == 4) & (tmp_df.col3== 7)]
print(final_df)

Output:

    col1  col2  col3
0     1     4     7

After reading to dataframe, all these above steps can be acheived in single line:

final = df[['col1', 'col2', 'col3']][(df.col1 == 1) & (df.col2 == 4) & (df.col3== 7)]
final

Hope it helps!

Update:

df = pd.DataFrame({'col1':[1,1,1,1,1], 'col2':[4,4,4,4,7],'col3':[7,7,9,7,7],
               'col4':['X','X','X','X','X'],'col5':['X','X','X','X','X'],'col6':['X','X','X','X','X'],
               'col7':['X','X','X','X','X'],'col8':['X','X','X','X','X'],'col9':['X','X','X','X','X'],
               'col91':['X','X','X','X','X']})
print(df)

Output:

     col1  col2  col3 col4 col5 col6 col7 col8 col9 col91
0     1     4     7    X    X    X    X    X    X     X
1     1     4     7    X    X    X    X    X    X     X
2     1     4     9    X    X    X    X    X    X     X
3     1     4     7    X    X    X    X    X    X     X
4     1     7     7    X    X    X    X    X    X     X

Now, usinig similar masking as above:

final = df[(df.col1 == 1) & (df.col2 == 4) & (df.col3== 7)]
final

Output:

    col1  col2  col3 col4 col5 col6 col7 col8 col9 col91
0     1     4     7    X    X    X    X    X    X     X
1     1     4     7    X    X    X    X    X    X     X
3     1     4     7    X    X    X    X    X    X     X

Upvotes: 2

Related Questions