Eugene L
Eugene L

Reputation: 131

OpenCV estimateRigidTransform()

After reading several posts about getting the 2D transformation of 2D points from one image to another, estimateRigidTransform() seems to be the recommendation. I'm trying to use it. I modified the source code (to change the RANSAC parameters, because its hardcoded, and the hardcoded parameters are not very good)(the source code for this function is in lkpyramid.cpp). I have read up on how RANSAC works, and am trying to understand the steps in estimateRigidTransform().

// choose random 3 non-complanar points from A & B
...
// additional check for non-complanar vectors
a[0] = pA[idx[0]];
a[1] = pA[idx[1]];
a[2] = pA[idx[2]];

b[0] = pB[idx[0]];
b[1] = pB[idx[1]];
b[2] = pB[idx[2]];

double dax1 = a[1].x - a[0].x, day1 = a[1].y - a[0].y;
double dax2 = a[2].x - a[0].x, day2 = a[2].y - a[0].y;
double dbx1 = b[1].x - b[0].x, dby1 = b[1].y - b[0].y;
double dbx2 = b[2].x - b[0].x, dby2 = b[2].y - b[0].y;
const double eps = 0.01;

if( fabs(dax1*day2 - day1*dax2) < eps*std::sqrt(dax1*dax1+day1*day1)*std::sqrt(dax2*dax2+day2*day2) ||
    fabs(dbx1*dby2 - dby1*dbx2) < eps*std::sqrt(dbx1*dbx1+dby1*dby1)*std::sqrt(dbx2*dbx2+dby2*dby2) )
    continue;

Is it a typo that it uses non-coplanar vectors? I mean the 2D points are all on the same plane right?

My second question is what is that if condition doing? I know that the left hand side (gives the area of triangle times 2) would be zero or near zero if the points are collinear, and the right hand side is the multiplication of the lengths of 2 sides of the triangle.

Upvotes: 0

Views: 595

Answers (1)

api55
api55

Reputation: 11420

Collinearity is preserved in affine transformations (such as the one you are probably estimating), but this transformations also calculate also changes in rotations in point of view (as if you rotated the object in a 3d world). However, these points will be collinear as well, so for the algorithm it may have not a unique solution. Look at the pictures:

test

imagine selecting 3 center points of each black square in the first row in the first image. Then map it to the same centers in the next image. It may generate a mapping to that solution, but also a mapping to a zoom version of the first one. The same may happen with the third one, just that this time may map to a zoom out version of the first one (without any other change). However if the points are not collinear, for example, 3 corner squares centers, it will find a unique mapping.

I hope this helps you to clarify your doubts. If not, leave a comment

Upvotes: 1

Related Questions