Reputation: 35
I'm new in Python and I'm trying to calculate a new column of a DataFrame based on a condition by another column of the same dataframe.
I have a DataFrame with the columns A, B, C, D, E.
I need to calculate new column F:
F = A - B if E == 'Y'
F = A - (C + D) if E == 'N'
I tried to use the function Apply
but it doesn't work.
Here is my code:
def my_funcion(column):
if column == 'N' :
return df['B']
if column== 'Y' :
return (df['C'] + df['D'])
df['F'] = df['A'] - df.apply(myfunction(df['E'], axis=1)
But it shows me this error:
ValueError: ('The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().', u'occurred at index 0'
Upvotes: 3
Views: 2619
Reputation: 862471
I think you can use numpy.where
:
Solution if in E
are only Y
and N
values:
np.random.seed(145)
df = pd.DataFrame(np.random.randint(10,size=(5,4)), columns=list('ABCD'))
df['E'] = ['Y'] * 3 + ['N'] * 2
df['F'] = np.where(df['E'] == 'Y', df['A'] - df['B'], df['A'] - (df['C'] + df['D']))
print (df)
A B C D E F
0 5 5 6 7 Y 0
1 2 5 8 5 Y -3
2 1 2 0 8 Y -1
3 4 5 8 9 N -13
4 1 6 7 6 N -12
Solution if in column E
are not only N
and Y
:
np.random.seed(145)
df = pd.DataFrame(np.random.randint(10,size=(5,4)), columns=list('ABCD'))
df['E'] = ['Y'] * 2 + ['N'] * 2 + ['X']
df['F'] = np.where(df['E'] == 'Y', df['A'] - df['B'],
np.where(df['E'] == 'N', df['A'] - (df['C'] + df['D']), 100))
print (df)
A B C D E F
0 5 5 6 7 Y 0
1 2 5 8 5 Y -3
2 1 2 0 8 N -7
3 4 5 8 9 N -13
4 1 6 7 6 X 100
If want use apply
(slowier):
def my_funcion(column):
if column['E'] == 'Y' :
return column['B']
if column['E'] == 'N' :
return (column['C'] + column['D'])
df['F'] = df['A'] - df.apply(my_funcion, axis=1)
print (df)
A B C D E F
0 5 5 6 7 Y 0
1 2 5 8 5 Y -3
2 1 2 0 8 N -7
3 4 5 8 9 N -13
4 1 6 7 6 N -12
Upvotes: 3