Reputation: 73342
I have some data frames in a list with all having the same structure – in this example the variables a, b and c. Now I want to summarize the means of the values across the list.
# list of 10 random data frames
n <- 1e1
initSeed <- 1234
set.seed(initSeed)
(seedVec <- sample.int(n = 1e3, size = n, replace = FALSE))
lst <- lapply(1:n, function(i){
set.seed(seedVec[i])
a <- rnorm(24,1,.1)
b <- rnorm(24,2,.2)
c <- rnorm(24,3,.3)
df <- data.frame(a,b,c)
})
I attempted to feed dplyr with lst %>% summarize_all(mean)
but he won't like lists. The formula below gives me the means of each data frame in the list, but not yet the means of these variables a, b and c across all data frames.
lapply(1:10, function(n){
lst[n] %>%
data.frame() %>%
summarize_all(mean)
})
So i wanted to make a new data frame with the summarized outputs in order to summarize them again, but this fails and both my extended formula and a related answer are throwing the Error in lst[[idx]] : subscript out of bounds
Here is my attempt:
df1 <- as.data.frame(setNames(replicate(3,numeric(0), simplify = FALSE),
letters[1:3]))
lapply(1:10, function(n){
lst[n] %>%
data.frame() %>%
summarize_all(mean) %>%
rbind(df1, lst[n])
})
df1 %>% summarize_all(mean)
How could I get what I want?
Upvotes: 0
Views: 3073
Reputation: 18425
You can do this with purrr
purrr::map_df(lst, function(df){summarize_all(df,mean)})
a b c
1 0.9917488 1.995821 3.121970
2 1.0007174 2.029938 2.962271
3 0.9582000 2.007167 3.046708
4 0.9745993 1.938877 3.015066
5 1.0050672 1.932359 3.052645
6 1.0196390 2.034723 2.998995
7 0.9717243 1.914532 3.024200
8 0.9954225 1.991664 2.981958
9 1.0148424 1.975775 2.949854
10 1.0014377 2.023839 2.976223
Or in base R...
t(sapply(lst,colMeans))
a b c
[1,] 0.9917488 1.995821 3.121970
[2,] 1.0007174 2.029938 2.962271
[3,] 0.9582000 2.007167 3.046708
[4,] 0.9745993 1.938877 3.015066
[5,] 1.0050672 1.932359 3.052645
[6,] 1.0196390 2.034723 2.998995
[7,] 0.9717243 1.914532 3.024200
[8,] 0.9954225 1.991664 2.981958
[9,] 1.0148424 1.975775 2.949854
[10,] 1.0014377 2.023839 2.976223
Upvotes: 2