Reputation: 2826
I am currently playing around with Red-Black Trees in Coq and would like to equip lists of nat
with an order, so that they can be stored at a red-black tree using the MSetRBT
module.
For that reason, I have defined seq_lt
as shown:
Fixpoint seq_lt (p q : seq nat) := match p, q with
| _, [::] => false
| [::], _ => true
| h :: p', h' :: q' =>
if h == h' then seq_lt p' q'
else (h < h')
end.
So far, I've managed to show:
Lemma lt_not_refl p : seq_lt p p = false.
Proof.
elim: p => //= ? ?; by rewrite eq_refl.
Qed.
as well as
Lemma lt_not_eqseq : forall p q, seq_lt p q -> ~(eqseq p q).
Proof.
rewrite /not. move => p q.
case: p; case: q => //= a A a' A'.
case: (boolP (a' == a)); last first.
- move => ? ?; by rewrite andFb.
- move => a'_eq_a A'_lt_A; rewrite andTb eqseqE; move/eqP => Heq.
move: A'_lt_A; by rewrite Heq lt_not_refl.
Qed.
However, I'm struggling in proving the following:
Lemma seq_lt_not_gt p q : ~~(seq_lt q p) -> (seq_lt p q) || (eqseq p q).
Proof.
case: p; case: q => // a A a' A'.
case: (boolP (a' < a)) => Haa'.
- rewrite {1}/seq_lt.
suff -> : (a' == a) = false by move/negP => ?.
by apply: ltn_eqF.
- rewrite -leqNgt leq_eqVlt in Haa'.
move/orP: Haa'; case; last first.
+ move => a_lt_a' _; apply/orP; left; rewrite /seq_lt.
have -> : (a == a') = false by apply: ltn_eqF. done.
+ (* What now? *)
Admitted.
I am not even sure if the last lemma is doable using induction, but I've been at it for a few hours and have no idea as to where to go from this point. Is the definition of seq_lt
problematic?
Upvotes: 2
Views: 193
Reputation: 6852
I am not sure what is your problem with induction but the proof seems straightforward:
Local Notation "x < y" := (seq_lt x y).
Lemma seq_lt_not_gt p q : ~~ (q < p) = (p < q) || (p == q).
Proof.
elim: p q => [|x p ihp] [|y q] //=; rewrite [y == x]eq_sym eqseq_cons.
by case: ifP => h_eq; [exact: ihp | rewrite orbF ltnNge leq_eqVlt h_eq negbK].
Qed.
If you are gonna use orders I suggest thou you use some of the libraries extending ssreflect to that purpose; I seem to recall that Cyril Cohen had a development on github. Note that the lemmas on orders have a slightly different form in mathcomp (example ltn_neqAle
), so you can also do:
Lemma lts_neqAltN p q : (q < p) = (q != p) && ~~ (p < q).
Proof.
elim: p q => [|x p ihp] [|y q] //=; rewrite eqseq_cons [y == x]eq_sym.
by case: ifP => h_eq; [apply: ihp | rewrite ltnNge leq_eqVlt h_eq].
Qed.
This could work a bit better for rewriting.
p.s: I suggest this proof for your second lemma:
Lemma lt_not_eqseq p q : seq_lt p q -> p != q.
Proof. by apply: contraTneq => heq; rewrite heq lt_not_refl. Qed.
Upvotes: 4