Reputation: 489
I'm trying to use lasso regression in python. I'm currently using lasso function in scikit-learn library.
I want my model not to penalize certain variables while training. (penalize only the rest of variables)
Below is my current code for training
rg_mdt = linear_model.LassoCV(alphas=np.array(10**np.linspace(0, -4, 100)), fit_intercept=True, normalize=True, cv=10)
rg_mdt.fit(df_mdt_rgmt.loc[df_mdt_rgmt.CLUSTER_ID == k].drop(['RESPONSE', 'CLUSTER_ID'], axis=1), df_mdt_rgmt.loc[df_mdt_rgmt.CLUSTER_ID == k, 'RESPONSE'])
df_mdt_rgmt is the data mart and I'm trying to keep the coefficient for certain columns non-zero.
glmnet in R provides 'penalty factor' parameter that let me do this, but how can I do that in python scikit-learn?
Below is the code I have in R
get.Lassomodel <- function(TB.EXP, TB.RSP){
VT.PEN <- rep(1, ncol(TB.EXP))
VT.PEN[which(colnames(TB.EXP) == "DC_RATE")] <- 0
VT.PEN[which(colnames(TB.EXP) == "FR_PRICE_PW_REP")] <- 0
VT.GRID <- 10^seq(0, -4, length=100)
REG.MOD <- cv.glmnet(as.matrix(TB.EXP), as.matrix(TB.RSP), alpha=1,
lambda=VT.GRID, penalty.factor=VT.PEN, nfolds=10, intercept=TRUE)
return(REG.MOD)
}
Upvotes: 5
Views: 3061
Reputation: 33532
I'm afraid you can't. Of course it's not an theoretical issue, but just a design-decision.
My reasoning is based on the available API and while sometimes there are undocumented functions, this time i don't think there is what you need because the user-guide already posts this problem in the 1-factor-norm-of-all form alpha*||w||_1
Depending on your setting you might modify sklearn's code (a bit scared about CD-tunings) or even implement a customized-objective using scipy.optimize (although the latter might be a bit slower).
Here is some example showing the scipy.optimize approach. I simplified the problem by removing intercept's.
""" data """
import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
A = diabetes.data[:150]
y = diabetes.target[:150]
alpha=0.1
weights=np.ones(A.shape[1])
""" sklearn """
from sklearn import linear_model
clf = linear_model.Lasso(alpha=alpha, fit_intercept=False)
clf.fit(A, y)
""" scipy """
from scipy.optimize import minimize
def lasso(x): # following sklearn's definition from user-guide!
return (1. / (2*A.shape[0])) * np.square(np.linalg.norm(A.dot(x) - y, 2)) + alpha * np.linalg.norm(weights*x, 1)
""" Test with weights = 1 """
x0 = np.zeros(A.shape[1])
res = minimize(lasso, x0, method='L-BFGS-B', options={'disp': False})
print('Equal weights')
print(lasso(clf.coef_), clf.coef_[:5])
print(lasso(res.x), res.x[:5])
""" Test scipy-based with special weights """
weights[[0, 3, 5]] = 0.0
res = minimize(lasso, x0, method='L-BFGS-B', options={'disp': False})
print('Specific weights')
print(lasso(res.x), res.x[:5])
Output:
Equal weights
12467.4614224 [-524.03922009 -75.41111354 820.0330707 40.08184085 -307.86020107]
12467.6514697 [-526.7102518 -67.42487561 825.70158417 40.04699607 -271.02909258]
Specific weights
12362.6078842 [ -6.12843589e+02 -1.51628334e+01 8.47561732e+02 9.54387812e+01
-1.02957112e-05]
Upvotes: 6