Reputation: 199
I got stucked with a data transformation task in pyspark. I want to replace all values of one column in a df with key-value-pairs specified in a dictionary.
dict = {'A':1, 'B':2, 'C':3}
My df looks like this:
+-----------++-----------+
| col1|| col2|
+-----------++-----------+
| B|| A|
| A|| A|
| A|| A|
| C|| B|
| A|| A|
+-----------++-----------+
Now I want to replace all values of col1 by the key-values pairs defined in dict.
Desired Output:
+-----------++-----------+
| col1|| col2|
+-----------++-----------+
| 2|| A|
| 1|| A|
| 1|| A|
| 3|| B|
| 1|| A|
+-----------++-----------+
I tried
df.na.replace(dict, 1).show()
but that also replaces the values on col2, which shall stay untouched.
Thank you for your help. Greetings :)
Upvotes: 8
Views: 22129
Reputation: 2108
Your data:
print df
DataFrame[col1: string, col2: string]
df.show()
+----+----+
|col1|col2|
+----+----+
| B| A|
| A| A|
| A| A|
| C| B|
| A| A|
+----+----+
diz = {"A":1, "B":2, "C":3}
Convert values of your dictionary from integer to string, in order to not get errors of replacing different types:
diz = {k:str(v) for k,v in diz.items()}
print diz
{'A': '1', 'C': '3', 'B': '2'}
Replace value of col1
df2 = df.na.replace(diz,1,"col1")
print df2
DataFrame[col1: string, col2: string]
df2.show()
+----+----+
|col1|col2|
+----+----+
| 2| A|
| 1| A|
| 1| A|
| 3| B|
| 1| A|
+----+----+
If you need to cast your values from String to Integer
from pyspark.sql.types import *
df3 = df2.select(df2["col1"].cast(IntegerType()),df2["col2"])
print df3
DataFrame[col1: int, col2: string]
df3.show()
+----+----+
|col1|col2|
+----+----+
| 2| A|
| 1| A|
| 1| A|
| 3| B|
| 1| A|
+----+----+
Upvotes: 14
Reputation: 4674
you can also create a simple lambda function to get the dictionary values and update your dataframe column.
+----+----+
|col1|col2|
+----+----+
| B| A|
| A| A|
| A| A|
| A| A|
| C| B|
| A| A|
+----+----+
dict = {'A':1, 'B':2, 'C':3}
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType
user_func = udf (lambda x: dict.get(x), IntegerType())
newdf = df.withColumn('col1',user_func(df.col1))
>>> newdf.show();
+----+----+
|col1|col2|
+----+----+
| 2| A|
| 1| A|
| 1| A|
| 1| A|
| 3| B|
| 1| A|
+----+----+
I hope this also works !
Upvotes: 4
Reputation: 5055
Before replacing the values of column 1 in my df, i had to automate the generation of my dictionary (given the many keys). This was done as follows:
keys =sorted(df.select('col1').rdd.flatMap(lambda x: x).distinct().collect())
keys
['A', 'B', 'C']
import numpy
maxval = len(keys)
values = list(numpy.array(list(range(maxval)))+1)
values
[1, 2, 3]
making sure (as titiro89 mentions above)
that the type of the 'new' values is the same type as the 'old' values (string in this case)
dct = {k:str(v) for k,v in zip(keys,values)}
print(dct)
{'A': '1', 'B': '2', 'C': '3'}
df2 = df.replace(dct,1,"'col1'")
Upvotes: 0