Reputation: 1716
I have a dataframe:
df = pd.DataFrame({'a':[1,2,3], 'b':['2017/01/01', '2017/01/02','2016/12/31'], 'c':['aaa', 'bbb', 'ccc'], 'd':[4,5,6]})
I have a list of formatters:
formatter = [4.2, '%Y%m%d', None, 8.2]
I want to format column a as float '4.2f', column b as strftime('%Y%m'), column c as it is (string, no need to format it), and column d as float '8.2f'. How do I pass this list of formatters to dataframe df?
Thanks,
Upvotes: 2
Views: 2628
Reputation: 982
If you switch from a list of formatters to a map based on columns you can use the style.format
on a dataframe.
Something like
import pandas as pd
import datetime
def time_formatter(data):
return datetime.datetime.strptime(data, "%Y/%m/%d").date().strftime('%Y%m%d')
df = pd.DataFrame({'a':[1,2,3], 'b':['2017/01/01', '2017/01/02','2016/12/31'], 'c':['aaa', 'bbb', 'ccc'], 'd':[4,5,6]})
formatter = {'a':'{:4.2f}', 'b': time_formatter, 'd':'{:8.2f}'}
df.style.format(formatter)
will output
a b c d
0 1.00 20170101 aaa 4.00
1 2.00 20170102 bbb 5.00
2 3.00 20161231 ccc 6.00
Edit:
There must be a cleaner way, but to actually update the dataframe with the format you could do something like:
df['a'] = df['a'].map('{:4.2f}'.format)
df['d'] = df['d'].map('{:8.2f}'.format)
df['b'] = df['b'].map(time_formatter)
Or for a more generic (and cryptic) way:
formatter = {'a':'{:4.2f}'.format, 'b': time_formatter, 'd':'{:8.2f}'.format}
for f in formatter.items():
column = f[0]
df[column] = df[column].map(f[1])
Upvotes: 4