Reputation: 631
I group a pandas dataframe using groupby() function with multiple columns.
df_tr_mod = df_tr.groupby(['Col1','Col2']).aCol.agg(['count'])
Now I want to access this count values (I want to multiply this all count values by 10) How i can do this?
Upvotes: 2
Views: 1931
Reputation: 862511
I think you need GroupBy.size
, agg
is better if aggregate by multiple functions:
What is the difference between size and count in pandas?
df_tr = pd.DataFrame({'Col1':[1,2,1,2,2],
'Col2':[5,5,5,6,6],
'aCol':[1,8,9,6,4]})
print(df_tr)
Col1 Col2 aCol
0 1 5 1
1 2 5 8
2 1 5 9
3 2 6 6
4 2 6 4
#your solution, only multiple 10
df_tr_mod = df_tr.groupby(['Col1','Col2']).aCol.agg(['count']) * 10
print (df_tr_mod)
count
Col1 Col2
1 5 20
2 5 10
6 20
print (type(df_tr_mod))
<class 'pandas.core.frame.DataFrame'>
#for MultiIndex add to_frame
df_tr_mod = df_tr.groupby(['Col1','Col2']).size().to_frame(name='count') * 10
print (df_tr_mod)
count
Col1 Col2
1 5 20
2 5 10
6 20
#for all columns from index add reset_index()
df_tr_mod = df_tr.groupby(['Col1','Col2']).size().reset_index(name='count')
df_tr_mod["count"]= df_tr_mod["count"]*10
print (df_tr_mod)
Col1 Col2 count
0 1 5 20
1 2 5 10
2 2 6 20
Better using agg
function:
df_tr_mod = df_tr.groupby(['Col1','Col2']).aCol.agg(['size', 'sum', 'mean'])
print (df_tr_mod)
size sum mean
Col1 Col2
1 5 2 10 5
2 5 1 8 8
6 2 10 5
Upvotes: 1
Reputation: 648
apply groupby
on both fields 'Col1', 'Col2'
with agg
function for count, here new 'count'
field added at the same time count value multiply with 10.
df_tr_mod = df_tr.groupby(['Col1','Col2']).aCol.agg(['count'])*10
Upvotes: 1